Abstract:In this work, we present SuFIA, the first framework for natural language-guided augmented dexterity for robotic surgical assistants. SuFIA incorporates the strong reasoning capabilities of large language models (LLMs) with perception modules to implement high-level planning and low-level control of a robot for surgical sub-task execution. This enables a learning-free approach to surgical augmented dexterity without any in-context examples or motion primitives. SuFIA uses a human-in-the-loop paradigm by restoring control to the surgeon in the case of insufficient information, mitigating unexpected errors for mission-critical tasks. We evaluate SuFIA on four surgical sub-tasks in a simulation environment and two sub-tasks on a physical surgical robotic platform in the lab, demonstrating its ability to perform common surgical sub-tasks through supervised autonomous operation under challenging physical and workspace conditions. Project website: orbit-surgical.github.io/sufia
Abstract:Deep learning in medical imaging often requires large-scale, high-quality data or initiation with suitably pre-trained weights. However, medical datasets are limited by data availability, domain-specific knowledge, and privacy concerns, and the creation of large and diverse radiologic databases like RadImageNet is highly resource-intensive. To address these limitations, we introduce RadImageGAN, the first multi-modal radiologic data generator, which was developed by training StyleGAN-XL on the real RadImageNet dataset of 102,774 patients. RadImageGAN can generate high-resolution synthetic medical imaging datasets across 12 anatomical regions and 130 pathological classes in 3 modalities. Furthermore, we demonstrate that RadImageGAN generators can be utilized with BigDatasetGAN to generate multi-class pixel-wise annotated paired synthetic images and masks for diverse downstream segmentation tasks with minimal manual annotation. We showed that using synthetic auto-labeled data from RadImageGAN can significantly improve performance on four diverse downstream segmentation datasets by augmenting real training data and/or developing pre-trained weights for fine-tuning. This shows that RadImageGAN combined with BigDatasetGAN can improve model performance and address data scarcity while reducing the resources needed for annotations for segmentation tasks.