LIFL, INRIA Futurs, GRAPPA
Abstract:Authorship obfuscation aims to disguise the identity of an author within a text by altering the writing style, vocabulary, syntax, and other linguistic features associated with the text author. This alteration needs to balance privacy and utility. While strong obfuscation techniques can effectively hide the author's identity, they often degrade the quality and usefulness of the text for its intended purpose. Conversely, maintaining high utility tends to provide insufficient privacy, making it easier for an adversary to de-anonymize the author. Thus, achieving an optimal trade-off between these two conflicting objectives is crucial. In this paper, we propose TAROT: Task-Oriented Authorship Obfuscation Using Policy Optimization, a new unsupervised authorship obfuscation method whose goal is to optimize the privacy-utility trade-off by regenerating the entire text considering its downstream utility. Our approach leverages policy optimization as a fine-tuning paradigm over small language models in order to rewrite texts by preserving author identity and downstream task utility. We show that our approach largely reduce the accuracy of attackers while preserving utility. We make our code and models publicly available.
Abstract:Pufferfish privacy is a flexible generalization of differential privacy that allows to model arbitrary secrets and adversary's prior knowledge about the data. Unfortunately, designing general and tractable Pufferfish mechanisms that do not compromise utility is challenging. Furthermore, this framework does not provide the composition guarantees needed for a direct use in iterative machine learning algorithms. To mitigate these issues, we introduce a R\'enyi divergence-based variant of Pufferfish and show that it allows us to extend the applicability of the Pufferfish framework. We first generalize the Wasserstein mechanism to cover a wide range of noise distributions and introduce several ways to improve its utility. We also derive stronger guarantees against out-of-distribution adversaries. Finally, as an alternative to composition, we prove privacy amplification results for contractive noisy iterations and showcase the first use of Pufferfish in private convex optimization. A common ingredient underlying our results is the use and extension of shift reduction lemmas.
Abstract:This paper presents a new generalization error analysis for the Decentralized Stochastic Gradient Descent (D-SGD) algorithm based on algorithmic stability. The obtained results largely improve upon state-of-the-art results, and even invalidate their claims that the communication graph has a detrimental effect on generalization. For instance, we show that in convex settings, D-SGD has the same generalization bounds as the classical SGD algorithm, no matter the choice of graph. We exhibit that this counter-intuitive result comes from considering the average of local parameters, which hides a final global averaging step incompatible with the decentralized scenario. In light of this observation, we advocate to analyze the supremum over local parameters and show that in this case, the graph does have an impact on the generalization. Unlike prior results, our analysis yields non-vacuous bounds even for non-connected graphs.
Abstract:In this work, we theoretically study the impact of differential privacy on fairness in binary classification. We prove that, given a class of models, popular group fairness measures are pointwise Lipschitz-continuous with respect to the parameters of the model. This result is a consequence of a more general statement on the probability that a decision function makes a negative prediction conditioned on an arbitrary event (such as membership to a sensitive group), which may be of independent interest. We use the aforementioned Lipschitz property to prove a high probability bound showing that, given enough examples, the fairness level of private models is close to the one of their non-private counterparts.
Abstract:Federated Learning (FL) is a novel approach enabling several clients holding sensitive data to collaboratively train machine learning models, without centralizing data. The cross-silo FL setting corresponds to the case of few ($2$--$50$) reliable clients, each holding medium to large datasets, and is typically found in applications such as healthcare, finance, or industry. While previous works have proposed representative datasets for cross-device FL, few realistic healthcare cross-silo FL datasets exist, thereby slowing algorithmic research in this critical application. In this work, we propose a novel cross-silo dataset suite focused on healthcare, FLamby (Federated Learning AMple Benchmark of Your cross-silo strategies), to bridge the gap between theory and practice of cross-silo FL. FLamby encompasses 7 healthcare datasets with natural splits, covering multiple tasks, modalities, and data volumes, each accompanied with baseline training code. As an illustration, we additionally benchmark standard FL algorithms on all datasets. Our flexible and modular suite allows researchers to easily download datasets, reproduce results and re-use the different components for their research. FLamby is available at~\url{www.github.com/owkin/flamby}.
Abstract:We consider an online estimation problem involving a set of agents. Each agent has access to a (personal) process that generates samples from a real-valued distribution and seeks to estimate its mean. We study the case where some of the distributions have the same mean, and the agents are allowed to actively query information from other agents. The goal is to design an algorithm that enables each agent to improve its mean estimate thanks to communication with other agents. The means as well as the number of distributions with same mean are unknown, which makes the task nontrivial. We introduce a novel collaborative strategy to solve this online personalized mean estimation problem. We analyze its time complexity and introduce variants that enjoy good performance in numerical experiments. We also extend our approach to the setting where clusters of agents with similar means seek to estimate the mean of their cluster.
Abstract:In this paper, we study differentially private empirical risk minimization (DP-ERM). It has been shown that the (worst-case) utility of DP-ERM reduces as the dimension increases. This is a major obstacle to privately learning large machine learning models. In high dimension, it is common for some model's parameters to carry more information than others. To exploit this, we propose a differentially private greedy coordinate descent (DP-GCD) algorithm. At each iteration, DP-GCD privately performs a coordinate-wise gradient step along the gradients' (approximately) greatest entry. We show theoretically that DP-GCD can improve utility by exploiting structural properties of the problem's solution (such as sparsity or quasi-sparsity), with very fast progress in early iterations. We then illustrate this numerically, both on synthetic and real datasets. Finally, we describe promising directions for future work.
Abstract:Sharing real-world speech utterances is key to the training and deployment of voice-based services. However, it also raises privacy risks as speech contains a wealth of personal data. Speaker anonymization aims to remove speaker information from a speech utterance while leaving its linguistic and prosodic attributes intact. State-of-the-art techniques operate by disentangling the speaker information (represented via a speaker embedding) from these attributes and re-synthesizing speech based on the speaker embedding of another speaker. Prior research in the privacy community has shown that anonymization often provides brittle privacy protection, even less so any provable guarantee. In this work, we show that disentanglement is indeed not perfect: linguistic and prosodic attributes still contain speaker information. We remove speaker information from these attributes by introducing differentially private feature extractors based on an autoencoder and an automatic speech recognizer, respectively, trained using noise layers. We plug these extractors in the state-of-the-art anonymization pipeline and generate, for the first time, differentially private utterances with a provable upper bound on the speaker information they contain. We evaluate empirically the privacy and utility resulting from our differentially private speaker anonymization approach on the LibriSpeech data set. Experimental results show that the generated utterances retain very high utility for automatic speech recognition training and inference, while being much better protected against strong adversaries who leverage the full knowledge of the anonymization process to try to infer the speaker identity.
Abstract:The widespread of powerful personal devices capable of collecting voice of their users has opened the opportunity to build speaker adapted speech recognition system (ASR) or to participate to collaborative learning of ASR. In both cases, personalized acoustic models (AM), i.e. fine-tuned AM with specific speaker data, can be built. A question that naturally arises is whether the dissemination of personalized acoustic models can leak personal information. In this paper, we show that it is possible to retrieve the gender of the speaker, but also his identity, by just exploiting the weight matrix changes of a neural acoustic model locally adapted to this speaker. Incidentally we observe phenomena that may be useful towards explainability of deep neural networks in the context of speech processing. Gender can be identified almost surely using only the first layers and speaker verification performs well when using middle-up layers. Our experimental study on the TED-LIUM 3 dataset with HMM/TDNN models shows an accuracy of 95% for gender detection, and an Equal Error Rate of 9.07% for a speaker verification task by only exploiting the weights from personalized models that could be exchanged instead of user data.
Abstract:This paper investigates methods to effectively retrieve speaker information from the personalized speaker adapted neural network acoustic models (AMs) in automatic speech recognition (ASR). This problem is especially important in the context of federated learning of ASR acoustic models where a global model is learnt on the server based on the updates received from multiple clients. We propose an approach to analyze information in neural network AMs based on a neural network footprint on the so-called Indicator dataset. Using this method, we develop two attack models that aim to infer speaker identity from the updated personalized models without access to the actual users' speech data. Experiments on the TED-LIUM 3 corpus demonstrate that the proposed approaches are very effective and can provide equal error rate (EER) of 1-2%.