Abstract:In this study, we introduce a deep-learning approach for determining both the 6DoF pose and 3D size of strawberries, aiming to significantly augment robotic harvesting efficiency. Our model was trained on a synthetic strawberry dataset, which is automatically generated within the Ignition Gazebo simulator, with a specific focus on the inherent symmetry exhibited by strawberries. By leveraging domain randomization techniques, the model demonstrated exceptional performance, achieving an 84.77\% average precision (AP) of 3D Intersection over Union (IoU) scores on the simulated dataset. Empirical evaluations, conducted by testing our model on real-world datasets, underscored the model's viability for real-world strawberry harvesting scenarios, even though its training was based on synthetic data. The model also exhibited robust occlusion handling abilities, maintaining accurate detection capabilities even when strawberries were obscured by other strawberries or foliage. Additionally, the model showcased remarkably swift inference speeds, reaching up to 60 frames per second (FPS).
Abstract:The rapid advancements in large language models (LLMs) have opened new avenues across various fields, including cybersecurity, which faces an ever-evolving threat landscape and need for innovative technologies. Despite initial explorations into the application of LLMs in cybersecurity, there is a lack of a comprehensive overview of this research area. This paper bridge this gap by providing a systematic literature review, encompassing an analysis of over 180 works, spanning across 25 LLMs and more than 10 downstream scenarios. Our comprehensive overview addresses three critical research questions: the construction of cybersecurity-oriented LLMs, LLMs' applications in various cybersecurity tasks, and the existing challenges and further research in this area. This study aims to shed light on the extensive potential of LLMs in enhancing cybersecurity practices, and serve as a valuable resource for applying LLMs in this doamin. We also maintain and regularly updated list of practical guides on LLMs for cybersecurity at https://github.com/tmylla/Awesome-LLM4Cybersecurity.
Abstract:The design of precoding plays a crucial role in achieving a high downlink sum-rate in multiuser multiple-input multiple-output (MIMO) orthogonal frequency-division multiplexing (OFDM) systems. In this correspondence, we propose a deep learning based joint CSI feedback and multiuser precoding method in frequency division duplex systems, aiming at maximizing the downlink sum-rate performance in an end-to-end manner. Specifically, the eigenvectors of the CSI matrix are compressed using deep joint source-channel coding techniques. This compression method enhances the resilience of the feedback CSI information against degradation in the feedback channel. A joint multiuser precoding module and a power allocation module are designed to adjust the precoding direction and the precoding power for users based on the feedback CSI information. Experimental results demonstrate that the downlink sum-rate can be significantly improved by using the proposed method, especially in scenarios with low signal-to-noise ratio and low feedback overhead.
Abstract:For massive multiple-input multiple-output systems in the frequency division duplex (FDD) mode, accurate downlink channel state information (CSI) is required at the base station (BS). However, the increasing number of transmit antennas aggravates the feedback overhead of CSI. Recently, deep learning (DL) has shown considerable potential to reduce CSI feedback overhead. In this paper, we propose a Swin Transformer-based autoencoder network called SwinCFNet for the CSI feedback task. In particular, the proposed method can effectively capture the long-range dependence information of CSI. Moreover, we explore the impact of the number of Swin Transformer blocks and the dimension of feature channels on the performance of SwinCFNet. Experimental results show that SwinCFNet significantly outperforms other DL-based methods with comparable model sizes, especially for the outdoor scenario.
Abstract:Deep learning based decoding networks have shown significant improvement in decoding LDPC codes, but the neural decoders are limited by rate-matching operations such as puncturing or extending, thus needing to train multiple decoders with different code rates for a variety of channel conditions. In this correspondence, we propose a Multi-Task Learning based rate-compatible LDPC ecoding network, which utilizes the structure of raptor-like LDPC codes and can deal with multiple code rates. In the proposed network, different portions of parameters are activated to deal with distinct code rates, which leads to parameter sharing among tasks. Numerical experiments demonstrate the effectiveness of the proposed method. Training the specially designed network under multiple code rates makes the decoder compatible with multiple code rates without sacrificing frame error rate performance.
Abstract:Low-rank approximation of images via singular value decomposition is well-received in the era of big data. However, singular value decomposition (SVD) is only for order-two data, i.e., matrices. It is necessary to flatten a higher order input into a matrix or break it into a series of order-two slices to tackle higher order data such as multispectral images and videos with the SVD. Higher order singular value decomposition (HOSVD) extends the SVD and can approximate higher order data using sums of a few rank-one components. We consider the problem of generalizing HOSVD over a finite dimensional commutative algebra. This algebra, referred to as a t-algebra, generalizes the field of complex numbers. The elements of the algebra, called t-scalars, are fix-sized arrays of complex numbers. One can generalize matrices and tensors over t-scalars and then extend many canonical matrix and tensor algorithms, including HOSVD, to obtain higher-performance versions. The generalization of HOSVD is called THOSVD. Its performance of approximating multi-way data can be further improved by an alternating algorithm. THOSVD also unifies a wide range of principal component analysis algorithms. To exploit the potential of generalized algorithms using t-scalars for approximating images, we use a pixel neighborhood strategy to convert each pixel to "deeper-order" t-scalar. Experiments on publicly available images show that the generalized algorithm over t-scalars, namely THOSVD, compares favorably with its canonical counterparts.