Abstract:The concept of semantic communication provides a novel approach for applications in scenarios with limited communication resources. In this paper, we propose an end-to-end (E2E) semantic molecular communication system, aiming to enhance the efficiency of molecular communication systems by reducing the transmitted information. Specifically, following the joint source channel coding paradigm, the network is designed to encode the task-relevant information into the concentration of the information molecules, which is robust to the degradation of the molecular communication channel. Furthermore, we propose a channel network to enable the E2E learning over the non-differentiable molecular channel. Experimental results demonstrate the superior performance of the semantic molecular communication system over the conventional methods in classification tasks.
Abstract:Deep learning based decoding networks have shown significant improvement in decoding LDPC codes, but the neural decoders are limited by rate-matching operations such as puncturing or extending, thus needing to train multiple decoders with different code rates for a variety of channel conditions. In this correspondence, we propose a Multi-Task Learning based rate-compatible LDPC ecoding network, which utilizes the structure of raptor-like LDPC codes and can deal with multiple code rates. In the proposed network, different portions of parameters are activated to deal with distinct code rates, which leads to parameter sharing among tasks. Numerical experiments demonstrate the effectiveness of the proposed method. Training the specially designed network under multiple code rates makes the decoder compatible with multiple code rates without sacrificing frame error rate performance.