Abstract:Real-world decision-making tasks are generally complex, requiring trade-offs between multiple, often conflicting, objectives. Despite this, the majority of research in reinforcement learning and decision-theoretic planning either assumes only a single objective, or that multiple objectives can be adequately handled via a simple linear combination. Such approaches may oversimplify the underlying problem and hence produce suboptimal results. This paper serves as a guide to the application of multi-objective methods to difficult problems, and is aimed at researchers who are already familiar with single-objective reinforcement learning and planning methods who wish to adopt a multi-objective perspective on their research, as well as practitioners who encounter multi-objective decision problems in practice. It identifies the factors that may influence the nature of the desired solution, and illustrates by example how these influence the design of multi-objective decision-making systems for complex problems.
Abstract:We present a method for visualising the response of a deep neural network to a specific input. For image data for instance our method will highlight areas that provide evidence in favor of, and against choosing a certain class. The method overcomes several shortcomings of previous methods and provides great additional insight into the decision making process of convolutional networks, which is important both to improve models and to accelerate the adoption of such methods in e.g. medicine. In experiments on ImageNet data, we illustrate how the method works and can be applied in different ways to understand deep neural nets.