Abstract:Continuous monitoring and accurate detection of complex sleep patterns associated to different sleep-related conditions is essential, not only for enhancing sleep quality but also for preventing the risk of developing chronic illnesses associated to unhealthy sleep. Despite significant advances in research, achieving versatile recognition of various unhealthy and sub-healthy sleep patterns with simple wearable devices at home remains a significant challenge. Here, we report a robust and durable ultrasensitive strain sensor array printed on a smart garment, in its collar region. This solution allows detecting subtle vibrations associated with multiple sleep patterns at the extrinsic laryngeal muscles. Equipped with a deep learning neural network, it can precisely identify six sleep states-nasal breathing, mouth breathing, snoring, bruxism, central sleep apnea (CSA), and obstructive sleep apnea (OSA)-with an impressive accuracy of 98.6%, all without requiring specific positioning. We further demonstrate its explainability and generalization capabilities in practical applications. Explainable artificial intelligence (XAI) visualizations reflect comprehensive signal pattern analysis with low bias. Transfer learning tests show that the system can achieve high accuracy (overall accuracy of 95%) on new users with very few-shot learning (less than 15 samples per class). The scalable manufacturing process, robustness, high accuracy, and excellent generalization of the smart garment make it a promising tool for next-generation continuous sleep monitoring.
Abstract:Machine learning-based fundus image diagnosis technologies trigger worldwide interest owing to their benefits such as reducing medical resource power and providing objective evaluation results. However, current methods are commonly based on supervised methods, bringing in a heavy workload to biomedical staff and hence suffering in expanding effective databases. To address this issue, in this article, we established a label-free method, name 'SSVT',which can automatically analyze un-labeled fundus images and generate high evaluation accuracy of 97.0% of four main eye diseases based on six public datasets and two datasets collected by Beijing Tongren Hospital. The promising results showcased the effectiveness of the proposed unsupervised learning method, and the strong application potential in biomedical resource shortage regions to improve global eye health.
Abstract:Our research presents a wearable Silent Speech Interface (SSI) technology that excels in device comfort, time-energy efficiency, and speech decoding accuracy for real-world use. We developed a biocompatible, durable textile choker with an embedded graphene-based strain sensor, capable of accurately detecting subtle throat movements. This sensor, surpassing other strain sensors in sensitivity by 420%, simplifies signal processing compared to traditional voice recognition methods. Our system uses a computationally efficient neural network, specifically a one-dimensional convolutional neural network with residual structures, to decode speech signals. This network is energy and time-efficient, reducing computational load by 90% while achieving 95.25% accuracy for a 20-word lexicon and swiftly adapting to new users and words with minimal samples. This innovation demonstrates a practical, sensitive, and precise wearable SSI suitable for daily communication applications.
Abstract:The human body DT has the potential to revolutionize healthcare and wellness, but its responsible and effective implementation requires consideration of various factors. This article presents a comprehensive overview of the current status and future prospects of the human body DT and proposes a five-level roadmap for its development. The roadmap covers the development of various components, such as wearable devices, data collection, data analysis, and decision-making systems. The article also highlights the necessary support, security, cost, and ethical considerations that must be addressed in order to ensure responsible and effective implementation of the human body DT. The proposed roadmap provides a framework for guiding future development and offers a unique perspective on the future of the human body DT, facilitating new interdisciplinary research and innovative solutions in this rapidly evolving field.