Abstract:SfM (Structure from Motion) has been extensively used for UAV (Unmanned Aerial Vehicle) image orientation. Its efficiency is directly influenced by feature matching. Although image retrieval has been extensively used for match pair selection, high computational costs are consumed due to a large number of local features and the large size of the used codebook. Thus, this paper proposes an efficient match pair retrieval method and implements an integrated workflow for parallel SfM reconstruction. First, an individual codebook is trained online by considering the redundancy of UAV images and local features, which avoids the ambiguity of training codebooks from other datasets. Second, local features of each image are aggregated into a single high-dimension global descriptor through the VLAD (Vector of Locally Aggregated Descriptors) aggregation by using the trained codebook, which remarkably reduces the number of features and the burden of nearest neighbor searching in image indexing. Third, the global descriptors are indexed via the HNSW (Hierarchical Navigable Small World) based graph structure for the nearest neighbor searching. Match pairs are then retrieved by using an adaptive threshold selection strategy and utilized to create a view graph for divide-and-conquer based parallel SfM reconstruction. Finally, the performance of the proposed solution has been verified using three large-scale UAV datasets. The test results demonstrate that the proposed solution accelerates match pair retrieval with a speedup ratio ranging from 36 to 108 and improves the efficiency of SfM reconstruction with competitive accuracy in both relative and absolute orientation.
Abstract:Machine Learning (ML) and Internet of Things (IoT) are complementary advances: ML techniques unlock complete potentials of IoT with intelligence, and IoT applications increasingly feed data collected by sensors into ML models, thereby employing results to improve their business processes and services. Hence, orchestrating ML pipelines that encompasses model training and implication involved in holistic development lifecycle of an IoT application often leads to complex system integration. This paper provides a comprehensive and systematic survey on the development lifecycle of ML-based IoT application. We outline core roadmap and taxonomy, and subsequently assess and compare existing standard techniques used in individual stage.
Abstract:As an unsupervised dimensionality reduction method, principal component analysis (PCA) has been widely considered as an efficient and effective preprocessing step for hyperspectral image (HSI) processing and analysis tasks. It takes each band as a whole and globally extracts the most representative bands. However, different homogeneous regions correspond to different objects, whose spectral features are diverse. It is obviously inappropriate to carry out dimensionality reduction through a unified projection for an entire HSI. In this paper, a simple but very effective superpixelwise PCA approach, called SuperPCA, is proposed to learn the intrinsic low-dimensional features of HSIs. In contrast to classical PCA models, SuperPCA has four main properties. (1) Unlike the traditional PCA method based on a whole image, SuperPCA takes into account the diversity in different homogeneous regions, that is, different regions should have different projections. (2) Most of the conventional feature extraction models cannot directly use the spatial information of HSIs, while SuperPCA is able to incorporate the spatial context information into the unsupervised dimensionality reduction by superpixel segmentation. (3) Since the regions obtained by superpixel segmentation have homogeneity, SuperPCA can extract potential low-dimensional features even under noise. (4) Although SuperPCA is an unsupervised method, it can achieve competitive performance when compared with supervised approaches. The resulting features are discriminative, compact, and noise resistant, leading to improved HSI classification performance. Experiments on three public datasets demonstrate that the SuperPCA model significantly outperforms the conventional PCA based dimensionality reduction baselines for HSI classification. The Matlab source code is available at https://github.com/junjun-jiang/SuperPCA