Abstract:The COVID-19 pandemic has significantly exacerbated existing educational disparities in Georgia's K-12 system, particularly in terms of racial and ethnic achievement gaps. Utilizing machine learning methods, the study conducts a comprehensive analysis of student achievement rates across different demographics, regions, and subjects. The findings highlight a significant decline in proficiency in English and Math during the pandemic, with a noticeable contraction in score distribution and a greater impact on economically disadvantaged and Black students. Socio-economic status, as represented by the Directly Certified Percentage -- the percentage of students eligible for free lunch, emerges as the most crucial factor, with additional insights drawn from faculty resources such as teacher salaries and expenditure on instruction. The study also identifies disparities in achievement rates between urban and rural settings, as well as variations across counties, underscoring the influence of geographical and socio-economic factors. The data suggests that targeted interventions and resource allocation, particularly in schools with higher percentages of economically disadvantaged students, are essential for mitigating educational disparities.
Abstract:SfM (Structure from Motion) has been extensively used for UAV (Unmanned Aerial Vehicle) image orientation. Its efficiency is directly influenced by feature matching. Although image retrieval has been extensively used for match pair selection, high computational costs are consumed due to a large number of local features and the large size of the used codebook. Thus, this paper proposes an efficient match pair retrieval method and implements an integrated workflow for parallel SfM reconstruction. First, an individual codebook is trained online by considering the redundancy of UAV images and local features, which avoids the ambiguity of training codebooks from other datasets. Second, local features of each image are aggregated into a single high-dimension global descriptor through the VLAD (Vector of Locally Aggregated Descriptors) aggregation by using the trained codebook, which remarkably reduces the number of features and the burden of nearest neighbor searching in image indexing. Third, the global descriptors are indexed via the HNSW (Hierarchical Navigable Small World) based graph structure for the nearest neighbor searching. Match pairs are then retrieved by using an adaptive threshold selection strategy and utilized to create a view graph for divide-and-conquer based parallel SfM reconstruction. Finally, the performance of the proposed solution has been verified using three large-scale UAV datasets. The test results demonstrate that the proposed solution accelerates match pair retrieval with a speedup ratio ranging from 36 to 108 and improves the efficiency of SfM reconstruction with competitive accuracy in both relative and absolute orientation.