LIRIS, ECL
Abstract:Cross-dataset Human Activity Recognition (HAR) suffers from limited model generalization, hindering its practical deployment. To address this critical challenge, inspired by the success of DoReMi in Large Language Models (LLMs), we introduce a data mixture optimization strategy for pre-training HAR models, aiming to improve the recognition performance across heterogeneous datasets. However, directly applying DoReMi to the HAR field encounters new challenges due to the continuous, multi-channel and intrinsic heterogeneous characteristics of IMU sensor data. To overcome these limitations, we propose a novel framework HAR-DoReMi, which introduces a masked reconstruction task based on Mean Squared Error (MSE) loss. By raplacing the discrete language sequence prediction task, which relies on the Negative Log-Likelihood (NLL) loss, in the original DoReMi framework, the proposed framework is inherently more appropriate for handling the continuous and multi-channel characteristics of IMU data. In addition, HAR-DoReMi integrates the Mahony fusion algorithm into the self-supervised HAR pre-training, aiming to mitigate the heterogeneity of varying sensor orientation. This is achieved by estimating the sensor orientation within each dataset and facilitating alignment with a unified coordinate system, thereby improving the cross-dataset generalization ability of the HAR model. Experimental evaluation on multiple cross-dataset HAR transfer tasks demonstrates that HAR-DoReMi improves the accuracy by an average of 6.51%, compared to the current state-of-the-art method with only approximately 30% to 50% of the data usage. These results confirm the effectiveness of HAR-DoReMi in improving the generalization and data efficiency of pre-training HAR models, underscoring its significant potential to facilitate the practical deployment of HAR technology.
Abstract:Class-incremental learning (CIL) for time series data faces critical challenges in balancing stability against catastrophic forgetting and plasticity for new knowledge acquisition, particularly under real-world constraints where historical data access is restricted. While pre-trained models (PTMs) have shown promise in CIL for vision and NLP domains, their potential in time series class-incremental learning (TSCIL) remains underexplored due to the scarcity of large-scale time series pre-trained models. Prompted by the recent emergence of large-scale pre-trained models (PTMs) for time series data, we present the first exploration of PTM-based Time Series Class-Incremental Learning (TSCIL). Our approach leverages frozen PTM backbones coupled with incrementally tuning the shared adapter, preserving generalization capabilities while mitigating feature drift through knowledge distillation. Furthermore, we introduce a Feature Drift Compensation Network (DCN), designed with a novel two-stage training strategy to precisely model feature space transformations across incremental tasks. This allows for accurate projection of old class prototypes into the new feature space. By employing DCN-corrected prototypes, we effectively enhance the unified classifier retraining, mitigating model feature drift and alleviating catastrophic forgetting. Extensive experiments on five real-world datasets demonstrate state-of-the-art performance, with our method yielding final accuracy gains of 1.4%-6.1% across all datasets compared to existing PTM-based approaches. Our work establishes a new paradigm for TSCIL, providing insights into stability-plasticity optimization for continual learning systems.
Abstract:Maximum Mean Discrepancy (MMD) is widely used in a number of domain adaptation (DA) methods and shows its effectiveness in aligning data distributions across domains. However, in previous DA research, MMD-based DA methods focus mostly on distribution alignment, and ignore to optimize the decision boundary for classification-aware DA, thereby falling short in reducing the DA upper error bound. In this paper, we propose a strengthened MMD measurement, namely, Decision Boundary optimization-informed MMD (DB-MMD), which enables MMD to carefully take into account the decision boundaries, thereby simultaneously optimizing the distribution alignment and cross-domain classifier within a hybrid framework, and leading to a theoretical bound guided DA. We further seamlessly embed the proposed DB-MMD measurement into several popular DA methods, e.g., MEDA, DGA-DA, to demonstrate its effectiveness w.r.t different experimental settings. We carry out comprehensive experiments using 8 standard DA datasets. The experimental results show that the DB-MMD enforced DA methods improve their baseline models using plain vanilla MMD, with a margin that can be as high as 9.5.
Abstract:In domain adaptation (DA), the effectiveness of deep learning-based models is often constrained by batch learning strategies that fail to fully apprehend the global statistical and geometric characteristics of data distributions. Addressing this gap, we introduce 'Global Awareness Enhanced Domain Adaptation' (GAN-DA), a novel approach that transcends traditional batch-based limitations. GAN-DA integrates a unique predefined feature representation (PFR) to facilitate the alignment of cross-domain distributions, thereby achieving a comprehensive global statistical awareness. This representation is innovatively expanded to encompass orthogonal and common feature aspects, which enhances the unification of global manifold structures and refines decision boundaries for more effective DA. Our extensive experiments, encompassing 27 diverse cross-domain image classification tasks, demonstrate GAN-DA's remarkable superiority, outperforming 24 established DA methods by a significant margin. Furthermore, our in-depth analyses shed light on the decision-making processes, revealing insights into the adaptability and efficiency of GAN-DA. This approach not only addresses the limitations of existing DA methodologies but also sets a new benchmark in the realm of domain adaptation, offering broad implications for future research and applications in this field.
Abstract:Event-guided imaging has received significant attention due to its potential to revolutionize instant imaging systems. However, the prior methods primarily focus on enhancing RGB images in a post-processing manner, neglecting the challenges of image signal processor (ISP) dealing with event sensor and the benefits events provide for reforming the ISP process. To achieve this, we conduct the first research on event-guided ISP. First, we present a new event-RAW paired dataset, collected with a novel but still confidential sensor that records pixel-level aligned events and RAW images. This dataset includes 3373 RAW images with 2248 x 3264 resolution and their corresponding events, spanning 24 scenes with 3 exposure modes and 3 lenses. Second, we propose a conventional ISP pipeline to generate good RGB frames as reference. This conventional ISP pipleline performs basic ISP operations, e.g.demosaicing, white balancing, denoising and color space transforming, with a ColorChecker as reference. Third, we classify the existing learnable ISP methods into 3 classes, and select multiple methods to train and evaluate on our new dataset. Lastly, since there is no prior work for reference, we propose a simple event-guided ISP method and test it on our dataset. We further put forward key technical challenges and future directions in RGB-Event ISP. In summary, to the best of our knowledge, this is the very first research focusing on event-guided ISP, and we hope it will inspire the community. The code and dataset are available at: https://github.com/yunfanLu/RGB-Event-ISP.
Abstract:Text-to-SQL is a fundamental and longstanding problem in the NLP area, aiming at converting natural language queries into SQL, enabling non-expert users to operate databases. Recent advances in LLM have greatly improved text-to-SQL performance. However, challenges persist, especially when dealing with complex user queries. Current approaches (e.g., COT prompting and multi-agent frameworks) rely on the ability of models to plan and generate SQL autonomously, but controlling performance remains difficult. In addition, LLMs are still prone to hallucinations. To alleviate these challenges, we designed a novel MCTS-SQL to guide SQL generation iteratively. The approach generates SQL queries through Monte Carlo Tree Search (MCTS) and a heuristic self-refinement mechanism are used to enhance accuracy and reliability. Key components include a schema selector for extracting relevant information and an MCTS-based generator for iterative query refinement. Experimental results from the SPIDER and BIRD benchmarks show that MCTS-SQL achieves state-of-the-art performance. Specifically, on the BIRD development dataset, MCTS-SQL achieves an Execution (EX) accuracy of 69.40% using GPT-4o as the base model and a significant improvement when dealing with challenging tasks, with an EX of 51.48%, which is 3.41% higher than the existing method.
Abstract:Limited by the complexity of basis function (B-spline) calculations, Kolmogorov-Arnold Networks (KAN) suffer from restricted parallel computing capability on GPUs. This paper proposes a novel ReLU-KAN implementation that inherits the core idea of KAN. By adopting ReLU (Rectified Linear Unit) and point-wise multiplication, we simplify the design of KAN's basis function and optimize the computation process for efficient CUDA computing. The proposed ReLU-KAN architecture can be readily implemented on existing deep learning frameworks (e.g., PyTorch) for both inference and training. Experimental results demonstrate that ReLU-KAN achieves a 20x speedup compared to traditional KAN with 4-layer networks. Furthermore, ReLU-KAN exhibits a more stable training process with superior fitting ability while preserving the "catastrophic forgetting avoidance" property of KAN. You can get the code in https://github.com/quiqi/relu_kan
Abstract:Wearable sensor human activity recognition (HAR) is a crucial area of research in activity sensing. While transformer-based temporal deep learning models have been extensively studied and implemented, their large number of parameters present significant challenges in terms of system computing load and memory usage, rendering them unsuitable for real-time mobile activity recognition applications. Recently, an efficient hardware-aware state space model (SSM) called Mamba has emerged as a promising alternative. Mamba demonstrates strong potential in long sequence modeling, boasts a simpler network architecture, and offers an efficient hardware-aware design. Leveraging SSM for activity recognition represents an appealing avenue for exploration. In this study, we introduce HARMamba, which employs a more lightweight selective SSM as the foundational model architecture for activity recognition. The goal is to address the computational resource constraints encountered in real-time activity recognition scenarios. Our approach involves processing sensor data flow by independently learning each channel and segmenting the data into "patches". The marked sensor sequence's position embedding serves as the input token for the bidirectional state space model, ultimately leading to activity categorization through the classification head. Compared to established activity recognition frameworks like Transformer-based models, HARMamba achieves superior performance while also reducing computational and memory overhead. Furthermore, our proposed method has been extensively tested on four public activity datasets: PAMAP2, WISDM, UNIMIB, and UCI, demonstrating impressive performance in activity recognition tasks.
Abstract:Graph neural networks have achieved remarkable success in learning graph representations, especially graph Transformer, which has recently shown superior performance on various graph mining tasks. However, graph Transformer generally treats nodes as tokens, which results in quadratic complexity regarding the number of nodes during self-attention computation. The graph MLP Mixer addresses this challenge by using the efficient MLP Mixer technique from computer vision. However, the time-consuming process of extracting graph tokens limits its performance. In this paper, we present a novel architecture named ChebMixer, a newly graph MLP Mixer that uses fast Chebyshev polynomials-based spectral filtering to extract a sequence of tokens. Firstly, we produce multiscale representations of graph nodes via fast Chebyshev polynomial-based spectral filtering. Next, we consider each node's multiscale representations as a sequence of tokens and refine the node representation with an effective MLP Mixer. Finally, we aggregate the multiscale representations of nodes through Chebyshev interpolation. Owing to the powerful representation capabilities and fast computational properties of MLP Mixer, we can quickly extract more informative node representations to improve the performance of downstream tasks. The experimental results prove our significant improvements in a variety of scenarios ranging from graph node classification to medical image segmentation.
Abstract:The massive generation of time-series data by largescale Internet of Things (IoT) devices necessitates the exploration of more effective models for multivariate time-series forecasting. In previous models, there was a predominant use of the Channel Dependence (CD) strategy (where each channel represents a univariate sequence). Current state-of-the-art (SOTA) models primarily rely on the Channel Independence (CI) strategy. The CI strategy treats all channels as a single channel, expanding the dataset to improve generalization performance and avoiding inter-channel correlation that disrupts long-term features. However, the CI strategy faces the challenge of interchannel correlation forgetting. To address this issue, we propose an innovative Mixed Channels strategy, combining the data expansion advantages of the CI strategy with the ability to counteract inter-channel correlation forgetting. Based on this strategy, we introduce MCformer, a multivariate time-series forecasting model with mixed channel features. The model blends a specific number of channels, leveraging an attention mechanism to effectively capture inter-channel correlation information when modeling long-term features. Experimental results demonstrate that the Mixed Channels strategy outperforms pure CI strategy in multivariate time-series forecasting tasks.