LIRIS, ECL
Abstract:Limited by the complexity of basis function (B-spline) calculations, Kolmogorov-Arnold Networks (KAN) suffer from restricted parallel computing capability on GPUs. This paper proposes a novel ReLU-KAN implementation that inherits the core idea of KAN. By adopting ReLU (Rectified Linear Unit) and point-wise multiplication, we simplify the design of KAN's basis function and optimize the computation process for efficient CUDA computing. The proposed ReLU-KAN architecture can be readily implemented on existing deep learning frameworks (e.g., PyTorch) for both inference and training. Experimental results demonstrate that ReLU-KAN achieves a 20x speedup compared to traditional KAN with 4-layer networks. Furthermore, ReLU-KAN exhibits a more stable training process with superior fitting ability while preserving the "catastrophic forgetting avoidance" property of KAN. You can get the code in https://github.com/quiqi/relu_kan
Abstract:Wearable sensor human activity recognition (HAR) is a crucial area of research in activity sensing. While transformer-based temporal deep learning models have been extensively studied and implemented, their large number of parameters present significant challenges in terms of system computing load and memory usage, rendering them unsuitable for real-time mobile activity recognition applications. Recently, an efficient hardware-aware state space model (SSM) called Mamba has emerged as a promising alternative. Mamba demonstrates strong potential in long sequence modeling, boasts a simpler network architecture, and offers an efficient hardware-aware design. Leveraging SSM for activity recognition represents an appealing avenue for exploration. In this study, we introduce HARMamba, which employs a more lightweight selective SSM as the foundational model architecture for activity recognition. The goal is to address the computational resource constraints encountered in real-time activity recognition scenarios. Our approach involves processing sensor data flow by independently learning each channel and segmenting the data into "patches". The marked sensor sequence's position embedding serves as the input token for the bidirectional state space model, ultimately leading to activity categorization through the classification head. Compared to established activity recognition frameworks like Transformer-based models, HARMamba achieves superior performance while also reducing computational and memory overhead. Furthermore, our proposed method has been extensively tested on four public activity datasets: PAMAP2, WISDM, UNIMIB, and UCI, demonstrating impressive performance in activity recognition tasks.
Abstract:Graph neural networks have achieved remarkable success in learning graph representations, especially graph Transformer, which has recently shown superior performance on various graph mining tasks. However, graph Transformer generally treats nodes as tokens, which results in quadratic complexity regarding the number of nodes during self-attention computation. The graph MLP Mixer addresses this challenge by using the efficient MLP Mixer technique from computer vision. However, the time-consuming process of extracting graph tokens limits its performance. In this paper, we present a novel architecture named ChebMixer, a newly graph MLP Mixer that uses fast Chebyshev polynomials-based spectral filtering to extract a sequence of tokens. Firstly, we produce multiscale representations of graph nodes via fast Chebyshev polynomial-based spectral filtering. Next, we consider each node's multiscale representations as a sequence of tokens and refine the node representation with an effective MLP Mixer. Finally, we aggregate the multiscale representations of nodes through Chebyshev interpolation. Owing to the powerful representation capabilities and fast computational properties of MLP Mixer, we can quickly extract more informative node representations to improve the performance of downstream tasks. The experimental results prove our significant improvements in a variety of scenarios ranging from graph node classification to medical image segmentation.
Abstract:The massive generation of time-series data by largescale Internet of Things (IoT) devices necessitates the exploration of more effective models for multivariate time-series forecasting. In previous models, there was a predominant use of the Channel Dependence (CD) strategy (where each channel represents a univariate sequence). Current state-of-the-art (SOTA) models primarily rely on the Channel Independence (CI) strategy. The CI strategy treats all channels as a single channel, expanding the dataset to improve generalization performance and avoiding inter-channel correlation that disrupts long-term features. However, the CI strategy faces the challenge of interchannel correlation forgetting. To address this issue, we propose an innovative Mixed Channels strategy, combining the data expansion advantages of the CI strategy with the ability to counteract inter-channel correlation forgetting. Based on this strategy, we introduce MCformer, a multivariate time-series forecasting model with mixed channel features. The model blends a specific number of channels, leveraging an attention mechanism to effectively capture inter-channel correlation information when modeling long-term features. Experimental results demonstrate that the Mixed Channels strategy outperforms pure CI strategy in multivariate time-series forecasting tasks.
Abstract:Traditional deep learning methods struggle to simultaneously segment, recognize, and forecast human activities from sensor data. This limits their usefulness in many fields such as healthcare and assisted living, where real-time understanding of ongoing and upcoming activities is crucial. This paper introduces P2LHAP, a novel Patch-to-Label Seq2Seq framework that tackles all three tasks in a efficient single-task model. P2LHAP divides sensor data streams into a sequence of "patches", served as input tokens, and outputs a sequence of patch-level activity labels including the predicted future activities. A unique smoothing technique based on surrounding patch labels, is proposed to identify activity boundaries accurately. Additionally, P2LHAP learns patch-level representation by sensor signal channel-independent Transformer encoders and decoders. All channels share embedding and Transformer weights across all sequences. Evaluated on three public datasets, P2LHAP significantly outperforms the state-of-the-art in all three tasks, demonstrating its effectiveness and potential for real-world applications.
Abstract:Accurate representations of 3D faces are of paramount importance in various computer vision and graphics applications. However, the challenges persist due to the limitations imposed by data discretization and model linearity, which hinder the precise capture of identity and expression clues in current studies. This paper presents a novel 3D morphable face model, named ImFace++, to learn a sophisticated and continuous space with implicit neural representations. ImFace++ first constructs two explicitly disentangled deformation fields to model complex shapes associated with identities and expressions, respectively, which simultaneously facilitate the automatic learning of correspondences across diverse facial shapes. To capture more sophisticated facial details, a refinement displacement field within the template space is further incorporated, enabling a fine-grained learning of individual-specific facial details. Furthermore, a Neural Blend-Field is designed to reinforce the representation capabilities through adaptive blending of an array of local fields. In addition to ImFace++, we have devised an improved learning strategy to extend expression embeddings, allowing for a broader range of expression variations. Comprehensive qualitative and quantitative evaluations demonstrate that ImFace++ significantly advances the state-of-the-art in terms of both face reconstruction fidelity and correspondence accuracy.
Abstract:Recent neural, physics-based modeling of garment deformations allows faster and visually aesthetic results as opposed to the existing methods. Material-specific parameters are used by the formulation to control the garment inextensibility. This delivers unrealistic results with physically implausible stretching. Oftentimes, the draped garment is pushed inside the body which is either corrected by an expensive post-processing, thus adding to further inconsistent stretching; or by deploying a separate training regime for each body type, restricting its scalability. Additionally, the flawed skinning process deployed by existing methods produces incorrect results on loose garments. In this paper, we introduce a geometrical constraint to the existing formulation that is collision-aware and imposes garment inextensibility wherever possible. Thus, we obtain realistic results where draped clothes stretch only while covering bigger body regions. Furthermore, we propose a geometry-aware garment skinning method by defining a body-garment closeness measure which works for all garment types, especially the loose ones.
Abstract:CNNs have been widely applied for medical image analysis. However, limited memory capacity is one of the most common drawbacks of processing high-resolution 3D volumetric data. 3D volumes are usually cropped or downsized first before processing, which can result in a loss of resolution, increase class imbalance, and affect the performance of the segmentation algorithms. In this paper, we propose an end-to-end deep learning approach called IP-UNet. IP-UNet is a UNet-based model that performs multi-class segmentation on Intensity Projection (IP) of 3D volumetric data instead of the memory-consuming 3D volumes. IP-UNet uses limited memory capability for training without losing the original 3D image resolution. We compare the performance of three models in terms of segmentation accuracy and computational cost: 1) Slice-by-slice 2D segmentation of the CT scan images using a conventional 2D UNet model. 2) IP-UNet that operates on data obtained by merging the extracted Maximum Intensity Projection (MIP), Closest Vessel Projection (CVP), and Average Intensity Projection (AvgIP) representations of the source 3D volumes, then applying the UNet model on the output IP images. 3) 3D-UNet model directly reads the 3D volumes constructed from a series of CT scan images and outputs the 3D volume of the predicted segmentation. We test the performance of these methods on 3D volumetric images for automatic breast calcification detection. Experimental results show that IP-Unet can achieve similar segmentation accuracy with 3D-Unet but with much better performance. It reduces the training time by 70\% and memory consumption by 92\%.
Abstract:Sensor-based human activity segmentation and recognition are two important and challenging problems in many real-world applications and they have drawn increasing attention from the deep learning community in recent years. Most of the existing deep learning works were designed based on pre-segmented sensor streams and they have treated activity segmentation and recognition as two separate tasks. In practice, performing data stream segmentation is very challenging. We believe that both activity segmentation and recognition may convey unique information which can complement each other to improve the performance of the two tasks. In this paper, we firstly proposes a new multitask deep neural network to solve the two tasks simultaneously. The proposed neural network adopts selective convolution and features multiscale windows to segment activities of long or short time durations. First, multiple windows of different scales are generated to center on each unit of the feature sequence. Then, the model is trained to predict, for each window, the activity class and the offset to the true activity boundaries. Finally, overlapping windows are filtered out by non-maximum suppression, and adjacent windows of the same activity are concatenated to complete the segmentation task. Extensive experiments were conducted on eight popular benchmarking datasets, and the results show that our proposed method outperforms the state-of-the-art methods both for activity recognition and segmentation.
Abstract:Deep neural networks do not discriminate between spurious and causal patterns, and will only learn the most predictive ones while ignoring the others. This shortcut learning behaviour is detrimental to a network's ability to generalize to an unknown test-time distribution in which the spurious correlations do not hold anymore. Debiasing methods were developed to make networks robust to such spurious biases but require to know in advance if a dataset is biased and make heavy use of minority counterexamples that do not display the majority bias of their class. In this paper, we argue that such samples should not be necessarily needed because the ''hidden'' causal information is often also contained in biased images. To study this idea, we propose 3 publicly released synthetic classification benchmarks, exhibiting predictive classification shortcuts, each of a different and challenging nature, without any minority samples acting as counterexamples. First, we investigate the effectiveness of several state-of-the-art strategies on our benchmarks and show that they do not yield satisfying results on them. Then, we propose an architecture able to succeed on our benchmarks, despite their unusual properties, using an entropic adversarial data augmentation training scheme. An encoder-decoder architecture is tasked to produce images that are not recognized by a classifier, by maximizing the conditional entropy of its outputs, and keep as much as possible of the initial content. A precise control of the information destroyed, via a disentangling process, enables us to remove the shortcut and leave everything else intact. Furthermore, results competitive with the state-of-the-art on the BAR dataset ensure the applicability of our method in real-life situations.