Abstract:Cross-dataset Human Activity Recognition (HAR) suffers from limited model generalization, hindering its practical deployment. To address this critical challenge, inspired by the success of DoReMi in Large Language Models (LLMs), we introduce a data mixture optimization strategy for pre-training HAR models, aiming to improve the recognition performance across heterogeneous datasets. However, directly applying DoReMi to the HAR field encounters new challenges due to the continuous, multi-channel and intrinsic heterogeneous characteristics of IMU sensor data. To overcome these limitations, we propose a novel framework HAR-DoReMi, which introduces a masked reconstruction task based on Mean Squared Error (MSE) loss. By raplacing the discrete language sequence prediction task, which relies on the Negative Log-Likelihood (NLL) loss, in the original DoReMi framework, the proposed framework is inherently more appropriate for handling the continuous and multi-channel characteristics of IMU data. In addition, HAR-DoReMi integrates the Mahony fusion algorithm into the self-supervised HAR pre-training, aiming to mitigate the heterogeneity of varying sensor orientation. This is achieved by estimating the sensor orientation within each dataset and facilitating alignment with a unified coordinate system, thereby improving the cross-dataset generalization ability of the HAR model. Experimental evaluation on multiple cross-dataset HAR transfer tasks demonstrates that HAR-DoReMi improves the accuracy by an average of 6.51%, compared to the current state-of-the-art method with only approximately 30% to 50% of the data usage. These results confirm the effectiveness of HAR-DoReMi in improving the generalization and data efficiency of pre-training HAR models, underscoring its significant potential to facilitate the practical deployment of HAR technology.
Abstract:The massive generation of time-series data by largescale Internet of Things (IoT) devices necessitates the exploration of more effective models for multivariate time-series forecasting. In previous models, there was a predominant use of the Channel Dependence (CD) strategy (where each channel represents a univariate sequence). Current state-of-the-art (SOTA) models primarily rely on the Channel Independence (CI) strategy. The CI strategy treats all channels as a single channel, expanding the dataset to improve generalization performance and avoiding inter-channel correlation that disrupts long-term features. However, the CI strategy faces the challenge of interchannel correlation forgetting. To address this issue, we propose an innovative Mixed Channels strategy, combining the data expansion advantages of the CI strategy with the ability to counteract inter-channel correlation forgetting. Based on this strategy, we introduce MCformer, a multivariate time-series forecasting model with mixed channel features. The model blends a specific number of channels, leveraging an attention mechanism to effectively capture inter-channel correlation information when modeling long-term features. Experimental results demonstrate that the Mixed Channels strategy outperforms pure CI strategy in multivariate time-series forecasting tasks.