Abstract:Invisible watermarking is essential for safeguarding digital content, enabling copyright protection and content authentication. However, existing watermarking methods fall short in robustness against regeneration attacks. In this paper, we propose a novel method called FreqMark that involves unconstrained optimization of the image latent frequency space obtained after VAE encoding. Specifically, FreqMark embeds the watermark by optimizing the latent frequency space of the images and then extracts the watermark through a pre-trained image encoder. This optimization allows a flexible trade-off between image quality with watermark robustness and effectively resists regeneration attacks. Experimental results demonstrate that FreqMark offers significant advantages in image quality and robustness, permits flexible selection of the encoding bit number, and achieves a bit accuracy exceeding 90% when encoding a 48-bit hidden message under various attack scenarios.
Abstract:Offline reinforcement learning (RL) has attracted much attention due to its ability in learning from static offline datasets and eliminating the need of interacting with the environment. Nevertheless, the success of offline RL relies heavily on the offline transitions annotated with reward labels. In practice, we often need to hand-craft the reward function, which is sometimes difficult, labor-intensive, or inefficient. To tackle this challenge, we set our focus on the offline imitation learning (IL) setting, and aim at getting a reward function based on the expert data and unlabeled data. To that end, we propose a simple yet effective search-based offline IL method, tagged SEABO. SEABO allocates a larger reward to the transition that is close to its closest neighbor in the expert demonstration, and a smaller reward otherwise, all in an unsupervised learning manner. Experimental results on a variety of D4RL datasets indicate that SEABO can achieve competitive performance to offline RL algorithms with ground-truth rewards, given only a single expert trajectory, and can outperform prior reward learning and offline IL methods across many tasks. Moreover, we demonstrate that SEABO also works well if the expert demonstrations contain only observations. Our code is publicly available at https://github.com/dmksjfl/SEABO.
Abstract:Recently, there are many efforts attempting to learn useful policies for continuous control in visual reinforcement learning (RL). In this scenario, it is important to learn a generalizable policy, as the testing environment may differ from the training environment, e.g., there exist distractors during deployment. Many practical algorithms are proposed to handle this problem. However, to the best of our knowledge, none of them provide a theoretical understanding of what affects the generalization gap and why their proposed methods work. In this paper, we bridge this issue by theoretically answering the key factors that contribute to the generalization gap when the testing environment has distractors. Our theories indicate that minimizing the representation distance between training and testing environments, which aligns with human intuition, is the most critical for the benefit of reducing the generalization gap. Our theoretical results are supported by the empirical evidence in the DMControl Generalization Benchmark (DMC-GB).
Abstract:Sample efficiency is one of the most critical issues for online reinforcement learning (RL). Existing methods achieve higher sample efficiency by adopting model-based methods, Q-ensemble, or better exploration mechanisms. We, instead, propose to train an off-policy RL agent via updating on a fixed sampled batch multiple times, thus reusing these samples and better exploiting them within a single optimization loop. We name our method sample multiple reuse (SMR). We theoretically show the properties of Q-learning with SMR, e.g., convergence. Furthermore, we incorporate SMR with off-the-shelf off-policy RL algorithms and conduct experiments on a variety of continuous control benchmarks. Empirical results show that SMR significantly boosts the sample efficiency of the base methods across most of the evaluated tasks without any hyperparameter tuning or additional tricks.
Abstract:Equipped with the trained environmental dynamics, model-based offline reinforcement learning (RL) algorithms can often successfully learn good policies from fixed-sized datasets, even some datasets with poor quality. Unfortunately, however, it can not be guaranteed that the generated samples from the trained dynamics model are reliable (e.g., some synthetic samples may lie outside of the support region of the static dataset). To address this issue, we propose Trajectory Truncation with Uncertainty (TATU), which adaptively truncates the synthetic trajectory if the accumulated uncertainty along the trajectory is too large. We theoretically show the performance bound of TATU to justify its benefits. To empirically show the advantages of TATU, we first combine it with two classical model-based offline RL algorithms, MOPO and COMBO. Furthermore, we integrate TATU with several off-the-shelf model-free offline RL algorithms, e.g., BCQ. Experimental results on the D4RL benchmark show that TATU significantly improves their performance, often by a large margin.
Abstract:We present state advantage weighting for offline reinforcement learning (RL). In contrast to action advantage $A(s,a)$ that we commonly adopt in QSA learning, we leverage state advantage $A(s,s^\prime)$ and QSS learning for offline RL, hence decoupling the action from values. We expect the agent can get to the high-reward state and the action is determined by how the agent can get to that corresponding state. Experiments on D4RL datasets show that our proposed method can achieve remarkable performance against the common baselines. Furthermore, our method shows good generalization capability when transferring from offline to online.