Abstract:Textual Attributed Graphs (TAGs) are crucial for modeling complex real-world systems, yet leveraging large language models (LLMs) for TAGs presents unique challenges due to the gap between sequential text processing and graph-structured data. We introduce AskGNN, a novel approach that bridges this gap by leveraging In-Context Learning (ICL) to integrate graph data and task-specific information into LLMs. AskGNN employs a Graph Neural Network (GNN)-powered structure-enhanced retriever to select labeled nodes across graphs, incorporating complex graph structures and their supervision signals. Our learning-to-retrieve algorithm optimizes the retriever to select example nodes that maximize LLM performance on graph. Experiments across three tasks and seven LLMs demonstrate AskGNN's superior effectiveness in graph task performance, opening new avenues for applying LLMs to graph-structured data without extensive fine-tuning.
Abstract:Human Activity Recognition (HAR) is a challenging, multi-label classification problem as activities may co-occur and sensor signals corresponding to the same activity may vary in different contexts (e.g., different device placements). This paper proposes a Deep Heterogeneous Contrastive Hyper-Graph Learning (DHC-HGL) framework that captures heterogenous Context-Aware HAR (CA-HAR) hypergraph properties in a message-passing and neighborhood-aggregation fashion. Prior work only explored homogeneous or shallow-node-heterogeneous graphs. DHC-HGL handles heterogeneous CA-HAR data by innovatively 1) Constructing three different types of sub-hypergraphs that are each passed through different custom HyperGraph Convolution (HGC) layers designed to handle edge-heterogeneity and 2) Adopting a contrastive loss function to ensure node-heterogeneity. In rigorous evaluation on two CA-HAR datasets, DHC-HGL significantly outperformed state-of-the-art baselines by 5.8% to 16.7% on Matthews Correlation Coefficient (MCC) and 3.0% to 8.4% on Macro F1 scores. UMAP visualizations of learned CA-HAR node embeddings are also presented to enhance model explainability.
Abstract:Data augmentation has shown its effectiveness in resolving the data-hungry problem and improving model's generalization ability. However, the quality of augmented data can be varied, especially compared with the raw/original data. To boost deep learning models' performance given augmented data/samples in text classification tasks, we propose a novel framework, which leverages both meta learning and contrastive learning techniques as parts of our design for reweighting the augmented samples and refining their feature representations based on their quality. As part of the framework, we propose novel weight-dependent enqueue and dequeue algorithms to utilize augmented samples' weight/quality information effectively. Through experiments, we show that our framework can reasonably cooperate with existing deep learning models (e.g., RoBERTa-base and Text-CNN) and augmentation techniques (e.g., Wordnet and Easydata) for specific supervised learning tasks. Experiment results show that our framework achieves an average of 1.6%, up to 4.3% absolute improvement on Text-CNN encoders and an average of 1.4%, up to 4.4% absolute improvement on RoBERTa-base encoders on seven GLUE benchmark datasets compared with the best baseline. We present an indepth analysis of our framework design, revealing the non-trivial contributions of our network components. Our code is publicly available for better reproducibility.
Abstract:Context-aware Human Activity Recognition (CHAR) is challenging due to the need to recognize the user's current activity from signals that vary significantly with contextual factors such as phone placements and the varied styles with which different users perform the same activity. In this paper, we argue that context-aware activity visit patterns in realistic in-the-wild data can equivocally be considered as a general graph representation learning task. We posit that exploiting underlying graphical patterns in CHAR data can improve CHAR task performance and representation learning. Building on the intuition that certain activities are frequently performed with the phone placed in certain positions, we focus on the context-aware human activity problem of recognizing the <Activity, Phone Placement> tuple. We demonstrate that CHAR data has an underlying graph structure that can be viewed as a heterogenous hypergraph that has multiple types of nodes and hyperedges (an edge connecting more than two nodes). Subsequently, learning <Activity, Phone Placement> representations becomes a graph node representation learning problem. After task transformation, we further propose a novel Heterogeneous HyperGraph Neural Network architecture for Context-aware Human Activity Recognition (HHGNN-CHAR), with three types of heterogeneous nodes (user, phone placement, and activity). Connections between all types of nodes are represented by hyperedges. Rigorous evaluation demonstrated that on an unscripted, in-the-wild CHAR dataset, our proposed framework significantly outperforms state-of-the-art (SOTA) baselines including CHAR models that do not exploit graphs, and GNN variants that do not incorporate heterogeneous nodes or hyperedges with overall improvements 14.04% on Matthews Correlation Coefficient (MCC) and 7.01% on Macro F1 scores.
Abstract:With the widespread online social networks, hate speeches are spreading faster and causing more damage than ever before. Existing hate speech detection methods have limitations in several aspects, such as handling data insufficiency, estimating model uncertainty, improving robustness against malicious attacks, and handling unintended bias (i.e., fairness). There is an urgent need for accurate, robust, and fair hate speech classification in online social networks. To bridge the gap, we design a data-augmented, fairness addressed, and uncertainty estimated novel framework. As parts of the framework, we propose Bidirectional Quaternion-Quasi-LSTM layers to balance effectiveness and efficiency. To build a generalized model, we combine five datasets collected from three platforms. Experiment results show that our model outperforms eight state-of-the-art methods under both no attack scenario and various attack scenarios, indicating the effectiveness and robustness of our model. We share our code along with combined dataset for better future research
Abstract:Hate speech detection on online social networks has become one of the emerging hot topics in recent years. With the broad spread and fast propagation speed across online social networks, hate speech makes significant impacts on society by increasing prejudice and hurting people. Therefore, there are aroused attention and concern from both industry and academia. In this paper, we address the hate speech problem and propose a novel hate speech detection framework called SWE2, which only relies on the content of messages and automatically identifies hate speech. In particular, our framework exploits both word-level semantic information and sub-word knowledge. It is intuitively persuasive and also practically performs well under a situation with/without character-level adversarial attack. Experimental results show that our proposed model achieves 0.975 accuracy and 0.953 macro F1, outperforming 7 state-of-the-art baselines under no adversarial attack. Our model robustly and significantly performed well under extreme adversarial attack (manipulation of 50% messages), achieving 0.967 accuracy and 0.934 macro F1.
Abstract:Wildlife trafficking (WLT) has emerged as a global issue, with traffickers expanding their operations from offline to online platforms, utilizing e-commerce websites and social networks to enhance their illicit trade. This paper addresses the challenge of detecting and recognizing wildlife product sales promotion behaviors in online social networks, a crucial aspect in combating these environmentally harmful activities. To counter these environmentally damaging illegal operations, in this research, we focus on wildlife product sales promotion behaviors in online social networks. Specifically, 1) A scalable dataset related to wildlife product trading is collected using a network-based approach. This dataset is labeled through a human-in-the-loop machine learning process, distinguishing positive class samples containing wildlife product selling posts and hard-negatives representing normal posts misclassified as potential WLT posts, subsequently corrected by human annotators. 2) We benchmark the machine learning results on the proposed dataset and build a practical framework that automatically identifies suspicious wildlife selling posts and accounts, sufficiently leveraging the multi-modal nature of online social networks. 3) This research delves into an in-depth analysis of trading posts, shedding light on the systematic and organized selling behaviors prevalent in the current landscape. We provide detailed insights into the nature of these behaviors, contributing valuable information for understanding and countering illegal wildlife product trading.
Abstract:With the capabilities of understanding and executing natural language instructions, Large language models (LLMs) can potentially act as a powerful tool for textual data augmentation. However, the quality of augmented data depends heavily on the augmentation instructions provided, and the effectiveness can fluctuate across different downstream tasks. While manually crafting and selecting instructions can offer some improvement, this approach faces scalability and consistency issues in practice due to the diversity of downstream tasks. In this work, we address these limitations by proposing a new solution, which can automatically generate a large pool of augmentation instructions and select the most suitable task-informed instructions, thereby empowering LLMs to create high-quality augmented data for different downstream tasks. Empirically, the proposed approach consistently generates augmented data with better quality compared to non-LLM and LLM-based data augmentation methods, leading to the best performance on 26 few-shot learning tasks sourced from a wide range of application domains.
Abstract:Large Language models (LLMs) have demonstrated impressive in-context learning (ICL) capabilities, where a LLM makes predictions for a given test input together with a few input-output pairs (demonstrations). Nevertheless, the inclusion of demonstrations leads to a quadratic increase in the computational overhead of the self-attention mechanism. Existing solutions attempt to distill lengthy demonstrations into compact vectors. However, they often require task-specific retraining or compromise LLM's in-context learning performance. To mitigate these challenges, we present Meta dEmonstratioN Distillation (MEND), where a language model learns to distill any lengthy demonstrations into vectors without retraining for a new downstream task. We exploit the knowledge distillation to enhance alignment between MEND and LLM, achieving both efficiency and effectiveness simultaneously. MEND is endowed with the meta-knowledge of distilling demonstrations through a two-stage training process, which includes meta-distillation pretraining and fine-tuning. Comprehensive evaluations across seven diverse ICL task partitions using decoder-only (GPT-2) and encoder-decoder (T5) attest to MEND's prowess. It not only matches but often outperforms the Vanilla ICL as well as other state-of-the-art distillation models, while significantly reducing the computational demands. This innovation promises enhanced scalability and efficiency for the practical deployment of large language models
Abstract:Self-supervised representation learning on text-attributed graphs, which aims to create expressive and generalizable representations for various downstream tasks, has received increasing research attention lately. However, existing methods either struggle to capture the full extent of structural context information or rely on task-specific training labels, which largely hampers their effectiveness and generalizability in practice. To solve the problem of self-supervised representation learning on text-attributed graphs, we develop a novel Graph-Centric Language model -- GRENADE. Specifically, GRENADE exploits the synergistic effect of both pre-trained language model and graph neural network by optimizing with two specialized self-supervised learning algorithms: graph-centric contrastive learning and graph-centric knowledge alignment. The proposed graph-centric self-supervised learning algorithms effectively help GRENADE to capture informative textual semantics as well as structural context information on text-attributed graphs. Through extensive experiments, GRENADE shows its superiority over state-of-the-art methods. Implementation is available at \url{https://github.com/bigheiniu/GRENADE}.