Abstract:Egocentric videos capture scenes from a wearer's viewpoint, resulting in dynamic backgrounds, frequent motion, and occlusions, posing challenges to accurate keystep recognition. We propose a flexible graph-learning framework for fine-grained keystep recognition that is able to effectively leverage long-term dependencies in egocentric videos, and leverage alignment between egocentric and exocentric videos during training for improved inference on egocentric videos. Our approach consists of constructing a graph where each video clip of the egocentric video corresponds to a node. During training, we consider each clip of each exocentric video (if available) as additional nodes. We examine several strategies to define connections across these nodes and pose keystep recognition as a node classification task on the constructed graphs. We perform extensive experiments on the Ego-Exo4D dataset and show that our proposed flexible graph-based framework notably outperforms existing methods by more than 12 points in accuracy. Furthermore, the constructed graphs are sparse and compute efficient. We also present a study examining on harnessing several multimodal features, including narrations, depth, and object class labels, on a heterogeneous graph and discuss their corresponding contribution to the keystep recognition performance.
Abstract:To address the data scarcity associated with 3D assets, 2D-lifting techniques such as Score Distillation Sampling (SDS) have become a widely adopted practice in text-to-3D generation pipelines. However, the diffusion models used in these techniques are prone to viewpoint bias and thus lead to geometric inconsistencies such as the Janus problem. To counter this, we introduce MT3D, a text-to-3D generative model that leverages a high-fidelity 3D object to overcome viewpoint bias and explicitly infuse geometric understanding into the generation pipeline. Firstly, we employ depth maps derived from a high-quality 3D model as control signals to guarantee that the generated 2D images preserve the fundamental shape and structure, thereby reducing the inherent viewpoint bias. Next, we utilize deep geometric moments to ensure geometric consistency in the 3D representation explicitly. By incorporating geometric details from a 3D asset, MT3D enables the creation of diverse and geometrically consistent objects, thereby improving the quality and usability of our 3D representations.
Abstract:Video understanding typically requires fine-tuning the large backbone when adapting to new domains. In this paper, we leverage the egocentric video foundation models (Ego-VFMs) based on video-language pre-training and propose a parameter-efficient adaptation for egocentric video tasks, namely Ego-VPA. It employs a local sparse approximation for each video frame/text feature using the basis prompts, and the selected basis prompts are used to synthesize video/text prompts. Since the basis prompts are shared across frames and modalities, it models context fusion and cross-modal transfer in an efficient fashion. Experiments show that Ego-VPA excels in lightweight adaptation (with only 0.84% learnable parameters), largely improving over baselines and reaching the performance of full fine-tuning.
Abstract:Pretraining egocentric vision-language models has become essential to improving downstream egocentric video-text tasks. These egocentric foundation models commonly use the transformer architecture. The memory footprint of these models during pretraining can be substantial. Therefore, we pretrain SViTT-Ego, the first sparse egocentric video-text transformer model integrating edge and node sparsification. We pretrain on the EgoClip dataset and incorporate the egocentric-friendly objective EgoNCE, instead of the frequently used InfoNCE. Most notably, SViTT-Ego obtains a +2.8% gain on EgoMCQ (intra-video) accuracy compared to LAVILA large, with no additional data augmentation techniques other than standard image augmentations, yet pretrainable on memory-limited devices.
Abstract:We introduce LAVITI, a novel approach to learning language, video, and temporal representations in long-form videos via contrastive learning. Different from pre-training on video-text pairs like EgoVLP, LAVITI aims to align language, video, and temporal features by extracting meaningful moments in untrimmed videos. Our model employs a set of learnable moment queries to decode clip-level visual, language, and temporal features. In addition to vision and language alignment, we introduce relative temporal embeddings (TE) to represent timestamps in videos, which enables contrastive learning of time. Significantly different from traditional approaches, the prediction of a particular timestamp is transformed by computing the similarity score between the predicted TE and all TEs. Furthermore, existing approaches for video understanding are mainly designed for short videos due to high computational complexity and memory footprint. Our method can be trained on the Ego4D dataset with only 8 NVIDIA RTX-3090 GPUs in a day. We validated our method on CharadesEgo action recognition, achieving state-of-the-art results.
Abstract:In the evolving landscape of text-to-image (T2I) diffusion models, the remarkable capability to generate high-quality images from textual descriptions faces challenges with the potential misuse of reproducing sensitive content. To address this critical issue, we introduce Robust Adversarial Concept Erase (RACE), a novel approach designed to mitigate these risks by enhancing the robustness of concept erasure method for T2I models. RACE utilizes a sophisticated adversarial training framework to identify and mitigate adversarial text embeddings, significantly reducing the Attack Success Rate (ASR). Impressively, RACE achieves a 30 percentage point reduction in ASR for the ``nudity'' concept against the leading white-box attack method. Our extensive evaluations demonstrate RACE's effectiveness in defending against both white-box and black-box attacks, marking a significant advancement in protecting T2I diffusion models from generating inappropriate or misleading imagery. This work underlines the essential need for proactive defense measures in adapting to the rapidly advancing field of adversarial challenges.
Abstract:We present Egocentric Action Scene Graphs (EASGs), a new representation for long-form understanding of egocentric videos. EASGs extend standard manually-annotated representations of egocentric videos, such as verb-noun action labels, by providing a temporally evolving graph-based description of the actions performed by the camera wearer, including interacted objects, their relationships, and how actions unfold in time. Through a novel annotation procedure, we extend the Ego4D dataset by adding manually labeled Egocentric Action Scene Graphs offering a rich set of annotations designed for long-from egocentric video understanding. We hence define the EASG generation task and provide a baseline approach, establishing preliminary benchmarks. Experiments on two downstream tasks, egocentric action anticipation and egocentric activity summarization, highlight the effectiveness of EASGs for long-form egocentric video understanding. We will release the dataset and the code to replicate experiments and annotations.
Abstract:This report introduces our novel method named STHG for the Audio-Visual Diarization task of the Ego4D Challenge 2023. Our key innovation is that we model all the speakers in a video using a single, unified heterogeneous graph learning framework. Unlike previous approaches that require a separate component solely for the camera wearer, STHG can jointly detect the speech activities of all people including the camera wearer. Our final method obtains 61.1% DER on the test set of Ego4D, which significantly outperforms all the baselines as well as last year's winner. Our submission achieved 1st place in the Ego4D Challenge 2023. We additionally demonstrate that applying the off-the-shelf speech recognition system to the diarized speech segments by STHG produces a competitive performance on the Speech Transcription task of this challenge.
Abstract:The rapid advancement of generative models, facilitating the creation of hyper-realistic images from textual descriptions, has concurrently escalated critical societal concerns such as misinformation. Traditional fake detection mechanisms, although providing some mitigation, fall short in attributing responsibility for the malicious use of synthetic images. This paper introduces a novel approach to model fingerprinting that assigns responsibility for the generated images, thereby serving as a potential countermeasure to model misuse. Our method modifies generative models based on each user's unique digital fingerprint, imprinting a unique identifier onto the resultant content that can be traced back to the user. This approach, incorporating fine-tuning into Text-to-Image (T2I) tasks using the Stable Diffusion Model, demonstrates near-perfect attribution accuracy with a minimal impact on output quality. We rigorously scrutinize our method's secrecy under two distinct scenarios: one where a malicious user attempts to detect the fingerprint, and another where a user possesses a comprehensive understanding of our method. We also evaluate the robustness of our approach against various image post-processing manipulations typically executed by end-users. Through extensive evaluation of the Stable Diffusion models, our method presents a promising and novel avenue for accountable model distribution and responsible use.
Abstract:Do video-text transformers learn to model temporal relationships across frames? Despite their immense capacity and the abundance of multimodal training data, recent work has revealed the strong tendency of video-text models towards frame-based spatial representations, while temporal reasoning remains largely unsolved. In this work, we identify several key challenges in temporal learning of video-text transformers: the spatiotemporal trade-off from limited network size; the curse of dimensionality for multi-frame modeling; and the diminishing returns of semantic information by extending clip length. Guided by these findings, we propose SViTT, a sparse video-text architecture that performs multi-frame reasoning with significantly lower cost than naive transformers with dense attention. Analogous to graph-based networks, SViTT employs two forms of sparsity: edge sparsity that limits the query-key communications between tokens in self-attention, and node sparsity that discards uninformative visual tokens. Trained with a curriculum which increases model sparsity with the clip length, SViTT outperforms dense transformer baselines on multiple video-text retrieval and question answering benchmarks, with a fraction of computational cost. Project page: http://svcl.ucsd.edu/projects/svitt.