Abstract:The rapid proliferation of e-commerce platforms accentuates the need for advanced search and retrieval systems to foster a superior user experience. Central to this endeavor is the precise extraction of product attributes from customer queries, enabling refined search, comparison, and other crucial e-commerce functionalities. Unlike traditional Named Entity Recognition (NER) tasks, e-commerce queries present a unique challenge owing to the intrinsic decorative relationship between product types and attributes. In this study, we propose a pioneering framework that integrates BERT for classification, a Conditional Random Fields (CRFs) layer for attribute value extraction, and Large Language Models (LLMs) for data annotation, significantly advancing attribute recognition from customer inquiries. Our approach capitalizes on the robust representation learning of BERT, synergized with the sequence decoding prowess of CRFs, to adeptly identify and extract attribute values. We introduce a novel decorative relation correction mechanism to further refine the extraction process based on the nuanced relationships between product types and attributes inherent in e-commerce data. Employing LLMs, we annotate additional data to expand the model's grasp and coverage of diverse attributes. Our methodology is rigorously validated on various datasets, including Walmart, BestBuy's e-commerce NER dataset, and the CoNLL dataset, demonstrating substantial improvements in attribute recognition performance. Particularly, the model showcased promising results during a two-month deployment in Walmart's Sponsor Product Search, underscoring its practical utility and effectiveness.
Abstract:In the dynamic field of eCommerce, the quality and comprehensiveness of product descriptions are pivotal for enhancing search visibility and customer engagement. Effective product descriptions can address the 'cold start' problem, align with market trends, and ultimately lead to increased click-through rates. Traditional methods for crafting these descriptions often involve significant human effort and may lack both consistency and scalability. This paper introduces a novel methodology for automating product description generation using the LLAMA 2.0 7B language model. We train the model on a dataset of authentic product descriptions from Walmart, one of the largest eCommerce platforms. The model is then fine-tuned for domain-specific language features and eCommerce nuances to enhance its utility in sales and user engagement. We employ multiple evaluation metrics, including NDCG, customer click-through rates, and human assessments, to validate the effectiveness of our approach. Our findings reveal that the system is not only scalable but also significantly reduces the human workload involved in creating product descriptions. This study underscores the considerable potential of large language models like LLAMA 2.0 7B in automating and optimizing various facets of eCommerce platforms, offering significant business impact, including improved search functionality and increased sales.
Abstract:Tensor factorization is a powerful tool to analyse multi-way data. Compared with traditional multi-linear methods, nonlinear tensor factorization models are capable of capturing more complex relationships in the data. However, they are computationally expensive and may suffer severe learning bias in case of extreme data sparsity. To overcome these limitations, in this paper we propose a distributed, flexible nonlinear tensor factorization model. Our model can effectively avoid the expensive computations and structural restrictions of the Kronecker-product in existing TGP formulations, allowing an arbitrary subset of tensorial entries to be selected to contribute to the training. At the same time, we derive a tractable and tight variational evidence lower bound (ELBO) that enables highly decoupled, parallel computations and high-quality inference. Based on the new bound, we develop a distributed inference algorithm in the MapReduce framework, which is key-value-free and can fully exploit the memory cache mechanism in fast MapReduce systems such as SPARK. Experimental results fully demonstrate the advantages of our method over several state-of-the-art approaches, in terms of both predictive performance and computational efficiency. Moreover, our approach shows a promising potential in the application of Click-Through-Rate (CTR) prediction for online advertising.
Abstract:Real-time bidding (RTB) has become one of the largest online advertising markets in the world. Today the bid price per ad impression is typically decided by the expected value of how it can lead to a desired action event (e.g., registering an account or placing a purchase order) to the advertiser. However, this industry standard approach to decide the bid price does not consider the actual effect of the ad shown to the user, which should be measured based on the performance lift among users who have been or have not been exposed to a certain treatment of ads. In this paper, we propose a new bidding strategy and prove that if the bid price is decided based on the performance lift rather than absolute performance value, advertisers can actually gain more action events. We describe the modeling methodology to predict the performance lift and demonstrate the actual performance gain through blind A/B test with real ad campaigns in an industry-leading Demand-Side Platform (DSP). We also discuss the relationship between attribution models and bidding strategies. We prove that, to move the DSPs to bid based on performance lift, they should be rewarded according to the relative performance lift they contribute.
Abstract:In targeted online advertising, advertisers look for maximizing campaign performance under delivery constraint within budget schedule. Most of the advertisers typically prefer to impose the delivery constraint to spend budget smoothly over the time in order to reach a wider range of audiences and have a sustainable impact. Since lots of impressions are traded through public auctions for online advertising today, the liquidity makes price elasticity and bid landscape between demand and supply change quite dynamically. Therefore, it is challenging to perform smooth pacing control and maximize campaign performance simultaneously. In this paper, we propose a smart pacing approach in which the delivery pace of each campaign is learned from both offline and online data to achieve smooth delivery and optimal performance goals. The implementation of the proposed approach in a real DSP system is also presented. Experimental evaluations on both real online ad campaigns and offline simulations show that our approach can effectively improve campaign performance and achieve delivery goals.