Picture for Kathryn Lawson

Kathryn Lawson

Differentiable modeling to unify machine learning and physical models and advance Geosciences

Add code
Jan 10, 2023
Figure 1 for Differentiable modeling to unify machine learning and physical models and advance Geosciences
Figure 2 for Differentiable modeling to unify machine learning and physical models and advance Geosciences
Figure 3 for Differentiable modeling to unify machine learning and physical models and advance Geosciences
Figure 4 for Differentiable modeling to unify machine learning and physical models and advance Geosciences
Viaarxiv icon

Differentiable, learnable, regionalized process-based models with physical outputs can approach state-of-the-art hydrologic prediction accuracy

Add code
Mar 28, 2022
Figure 1 for Differentiable, learnable, regionalized process-based models with physical outputs can approach state-of-the-art hydrologic prediction accuracy
Figure 2 for Differentiable, learnable, regionalized process-based models with physical outputs can approach state-of-the-art hydrologic prediction accuracy
Figure 3 for Differentiable, learnable, regionalized process-based models with physical outputs can approach state-of-the-art hydrologic prediction accuracy
Figure 4 for Differentiable, learnable, regionalized process-based models with physical outputs can approach state-of-the-art hydrologic prediction accuracy
Viaarxiv icon

Continental-scale streamflow modeling of basins with reservoirs: a demonstration of effectiveness and a delineation of challenges

Add code
Jan 12, 2021
Figure 1 for Continental-scale streamflow modeling of basins with reservoirs: a demonstration of effectiveness and a delineation of challenges
Figure 2 for Continental-scale streamflow modeling of basins with reservoirs: a demonstration of effectiveness and a delineation of challenges
Figure 3 for Continental-scale streamflow modeling of basins with reservoirs: a demonstration of effectiveness and a delineation of challenges
Figure 4 for Continental-scale streamflow modeling of basins with reservoirs: a demonstration of effectiveness and a delineation of challenges
Viaarxiv icon

The data synergy effects of time-series deep learning models in hydrology

Add code
Jan 06, 2021
Figure 1 for The data synergy effects of time-series deep learning models in hydrology
Figure 2 for The data synergy effects of time-series deep learning models in hydrology
Figure 3 for The data synergy effects of time-series deep learning models in hydrology
Figure 4 for The data synergy effects of time-series deep learning models in hydrology
Viaarxiv icon

Prediction in ungauged regions with sparse flow duration curves and input-selection ensemble modeling

Add code
Nov 26, 2020
Figure 1 for Prediction in ungauged regions with sparse flow duration curves and input-selection ensemble modeling
Figure 2 for Prediction in ungauged regions with sparse flow duration curves and input-selection ensemble modeling
Figure 3 for Prediction in ungauged regions with sparse flow duration curves and input-selection ensemble modeling
Viaarxiv icon

From parameter calibration to parameter learning: Revolutionizing large-scale geoscientific modeling with big data

Add code
Sep 12, 2020
Figure 1 for From parameter calibration to parameter learning: Revolutionizing large-scale geoscientific modeling with big data
Figure 2 for From parameter calibration to parameter learning: Revolutionizing large-scale geoscientific modeling with big data
Figure 3 for From parameter calibration to parameter learning: Revolutionizing large-scale geoscientific modeling with big data
Figure 4 for From parameter calibration to parameter learning: Revolutionizing large-scale geoscientific modeling with big data
Viaarxiv icon