Abstract:Large language models (LLMs), renowned for their powerful conversational abilities, are widely recognized as exceptional tools in the field of education, particularly in the context of automated intelligent instruction systems for language learning. In this paper, we propose a scoring system based on LLMs, motivated by their positive impact on text-related scoring tasks. Specifically, the speech encoder first maps the learner's speech into contextual features. The adapter layer then transforms these features to align with the text embedding in latent space. The assessment task-specific prefix and prompt text are embedded and concatenated with the features generated by the modality adapter layer, enabling the LLMs to predict accuracy and fluency scores. Our experiments demonstrate that the proposed scoring systems achieve competitive results compared to the baselines on the Speechocean762 datasets. Moreover, we also conducted an ablation study to better understand the contributions of the prompt text and training strategy in the proposed scoring system.
Abstract:Speech fluency/disfluency can be evaluated by analyzing a range of phonetic and prosodic features. Deep neural networks are commonly trained to map fluency-related features into the human scores. However, the effectiveness of deep learning-based models is constrained by the limited amount of labeled training samples. To address this, we introduce a self-supervised learning (SSL) approach that takes into account phonetic and prosody awareness for fluency scoring. Specifically, we first pre-train the model using a reconstruction loss function, by masking phones and their durations jointly on a large amount of unlabeled speech and text prompts. We then fine-tune the pre-trained model using human-annotated scoring data. Our experimental results, conducted on datasets such as Speechocean762 and our non-native datasets, show that our proposed method outperforms the baseline systems in terms of Pearson correlation coefficients (PCC). Moreover, we also conduct an ablation study to better understand the contribution of phonetic and prosody factors during the pre-training stage.
Abstract:Recent studies on pronunciation scoring have explored the effect of introducing phone embeddings as reference pronunciation, but mostly in an implicit manner, i.e., addition or concatenation of reference phone embedding and actual pronunciation of the target phone as the phone-level pronunciation quality representation. In this paper, we propose to use linguistic-acoustic similarity to explicitly measure the deviation of non-native production from its native reference for pronunciation assessment. Specifically, the deviation is first estimated by the cosine similarity between reference phone embedding and corresponding acoustic embedding. Next, a phone-level Goodness of pronunciation (GOP) pre-training stage is introduced to guide this similarity-based learning for better initialization of the aforementioned two embeddings. Finally, a transformer-based hierarchical pronunciation scorer is used to map a sequence of phone embeddings, acoustic embeddings along with their similarity measures to predict the final utterance-level score. Experimental results on the non-native databases suggest that the proposed system significantly outperforms the baselines, where the acoustic and phone embeddings are simply added or concatenated. A further examination shows that the phone embeddings learned in the proposed approach are able to capture linguistic-acoustic attributes of native pronunciation as reference.
Abstract:A typical fluency scoring system generally relies on an automatic speech recognition (ASR) system to obtain time stamps in input speech for either the subsequent calculation of fluency-related features or directly modeling speech fluency with an end-to-end approach. This paper describes a novel ASR-free approach for automatic fluency assessment using self-supervised learning (SSL). Specifically, wav2vec2.0 is used to extract frame-level speech features, followed by K-means clustering to assign a pseudo label (cluster index) to each frame. A BLSTM-based model is trained to predict an utterance-level fluency score from frame-level SSL features and the corresponding cluster indexes. Neither speech transcription nor time stamp information is required in the proposed system. It is ASR-free and can potentially avoid the ASR errors effect in practice. Experimental results carried out on non-native English databases show that the proposed approach significantly improves the performance in the "open response" scenario as compared to previous methods and matches the recently reported performance in the "read aloud" scenario.
Abstract:Deep learning-based pronunciation scoring models highly rely on the availability of the annotated non-native data, which is costly and has scalability issues. To deal with the data scarcity problem, data augmentation is commonly used for model pretraining. In this paper, we propose a phone-level mixup, a simple yet effective data augmentation method, to improve the performance of word-level pronunciation scoring. Specifically, given a phoneme sequence from lexicon, the artificial augmented word sample can be generated by randomly sampling from the corresponding phone-level features in training data, while the word score is the average of their GOP scores. Benefit from the arbitrary phone-level combination, the mixup is able to generate any word with various pronunciation scores. Moreover, we utilize multi-source information (e.g., MFCC and deep features) to further improve the scoring system performance. The experiments conducted on the Speechocean762 show that the proposed system outperforms the baseline by adding the mixup data for pretraining, with Pearson correlation coefficients (PCC) increasing from 0.567 to 0.61. The results also indicate that proposed method achieves similar performance by using 1/10 unlabeled data of baseline. In addition, the experimental results also demonstrate the efficiency of our proposed multi-source approach.
Abstract:Recently, end-to-end mispronunciation detection and diagnosis (MD&D) systems has become a popular alternative to greatly simplify the model-building process of conventional hybrid DNN-HMM systems by representing complicated modules with a single deep network architecture. In this paper, in order to utilize the prior text in the end-to-end structure, we present a novel text-dependent model which is difference with sed-mdd, the model achieves a fully end-to-end system by aligning the audio with the phoneme sequences of the prior text inside the model through the attention mechanism. Moreover, the prior text as input will be a problem of imbalance between positive and negative samples in the phoneme sequence. To alleviate this problem, we propose three simple data augmentation methods, which effectively improve the ability of model to capture mispronounced phonemes. We conduct experiments on L2-ARCTIC, and our best performance improved from 49.29% to 56.08% in F-measure metric compared to the CNN-RNN-CTC model.