Abstract:The ability to generate multiple plans is central to using planning in real-life applications. Top-quality planners generate sets of such top-cost plans, allowing flexibility in determining equivalent ones. In terms of the order between actions in a plan, the literature only considers two extremes -- either all orders are important, making each plan unique, or all orders are unimportant, treating two plans differing only in the order of actions as equivalent. To allow flexibility in selecting important orders, we propose specifying a subset of actions the orders between which are important, interpolating between the top-quality and unordered top-quality planning problems. We explore the ways of adapting partial order reduction search pruning techniques to address this new computational problem and present experimental evaluations demonstrating the benefits of exploiting such techniques in this setting.
Abstract:The growing utilization of planning tools in practical scenarios has sparked an interest in generating multiple high-quality plans. Consequently, a range of computational problems under the general umbrella of top-quality planning were introduced over a short time period, each with its own definition. In this work, we show that the existing definitions can be unified into one, based on a dominance relation. The different computational problems, therefore, simply correspond to different dominance relations. Given the unified definition, we can now certify the top-quality of the solutions, leveraging existing certification of unsolvability and optimality. We show that task transformations found in the existing literature can be employed for the efficient certification of various top-quality planning problems and propose a novel transformation to efficiently certify loopless top-quality planning.
Abstract:Foundation models (FMs) such as large language models have revolutionized the field of AI by showing remarkable performance in various tasks. However, they exhibit numerous limitations that prevent their broader adoption in many real-world systems, which often require a higher bar for trustworthiness and usability. Since FMs are trained using loss functions aimed at reconstructing the training corpus in a self-supervised manner, there is no guarantee that the model's output aligns with users' preferences for a specific task at hand. In this survey paper, we propose a conceptual framework that encapsulates different modes by which agents could interact with FMs and guide them suitably for a set of tasks, particularly through knowledge augmentation and reasoning. Our framework elucidates agent role categories such as updating the underlying FM, assisting with prompting the FM, and evaluating the FM output. We also categorize several state-of-the-art approaches into agent interaction protocols, highlighting the nature and extent of involvement of the various agent roles. The proposed framework provides guidance for future directions to further realize the power of FMs in practical AI systems.
Abstract:AI planning and Reinforcement Learning (RL) both solve sequential decision-making problems under the different formulations. AI Planning requires operator models, but then allows efficient plan generation. RL requires no operator model, instead learns a policy to guide an agent to high reward states. Planning can be brittle in the face of noise whereas RL is more tolerant. However, RL requires a large number of training examples to learn the policy. In this work, we aim to bring AI planning and RL closer by showing that a suitably defined planning model can be used to improve the efficiency of RL. Specifically, we show that the options in the hierarchical RL can be derived from a planning task and integrate planning and RL algorithms for training option policy functions. Our experiments demonstrate an improved sample efficiency on a variety of RL environments over the previous state-of-the-art.