Abstract:The increasing popularity of generative flow networks (GFlowNets or GFNs) is accompanied with a proliferation of code sources. This hinders the implementation of new features, such as training losses, that can readily be compared to existing ones, on a set of common environments. In addition to slowing down research in the field of GFlowNets, different code bases use different conventions, that might be confusing for newcomers. `torchgfn` is a library built on top of PyTorch, that aims at addressing both problems. It provides user with a simple API for environments, and useful abstractions for samplers and losses. Multiple examples are provided, replicating published results. The code is available in https://github.com/saleml/torchgfn.
Abstract:TorchXRayVision is an open source software library for working with chest X-ray datasets and deep learning models. It provides a common interface and common pre-processing chain for a wide set of publicly available chest X-ray datasets. In addition, a number of classification and representation learning models with different architectures, trained on different data combinations, are available through the library to serve as baselines or feature extractors.
Abstract:Whereas much of the success of the current generation of neural language models has been driven by increasingly large training corpora, relatively little research has been dedicated to analyzing these massive sources of textual data. In this exploratory analysis, we delve deeper into the Common Crawl, a colossal web corpus that is extensively used for training language models. We find that it contains a significant amount of undesirable content, including hate speech and sexually explicit content, even after filtering procedures. We discuss the potential impacts of this content on language models and conclude with future research directions and a more mindful approach to corpus collection and analysis.
Abstract:Overfitting is a common issue in machine learning, which can arise when the model learns to predict class membership using convenient but spuriously-correlated image features instead of the true image features that denote a class. These are typically visualized using saliency maps. In some object classification tasks such as for medical images, one may have some images with masks, indicating a region of interest, i.e., which part of the image contains the most relevant information for the classification. We describe a simple method for taking advantage of such auxiliary labels, by training networks to ignore the distracting features which may be extracted outside of the region of interest, on the training images for which such masks are available. This mask information is only used during training and has an impact on generalization accuracy in a dataset-dependent way. We observe an underwhelming relationship between controlling saliency maps and improving generalization performance.