Abstract:Conversational systems must be robust to user interactions that naturally exhibit diverse conversational traits. Capturing and simulating these diverse traits coherently and efficiently presents a complex challenge. This paper introduces Multi-Trait Adaptive Decoding (mTAD), a method that generates diverse user profiles at decoding-time by sampling from various trait-specific Language Models (LMs). mTAD provides an adaptive and scalable approach to user simulation, enabling the creation of multiple user profiles without the need for additional fine-tuning. By analyzing real-world dialogues from the Conversational Task Assistant (CTA) domain, we identify key conversational traits and developed a framework to generate profile-aware dialogues that enhance conversational diversity. Experimental results validate the effectiveness of our approach in modeling single-traits using specialized LMs, which can capture less common patterns, even in out-of-domain tasks. Furthermore, the results demonstrate that mTAD is a robust and flexible framework for combining diverse user simulators.
Abstract:Guiding users through complex procedural plans is an inherently multimodal task in which having visually illustrated plan steps is crucial to deliver an effective plan guidance. However, existing works on plan-following language models (LMs) often are not capable of multimodal input and output. In this work, we present MM-PlanLLM, the first multimodal LLM designed to assist users in executing instructional tasks by leveraging both textual plans and visual information. Specifically, we bring cross-modality through two key tasks: Conversational Video Moment Retrieval, where the model retrieves relevant step-video segments based on user queries, and Visually-Informed Step Generation, where the model generates the next step in a plan, conditioned on an image of the user's current progress. MM-PlanLLM is trained using a novel multitask-multistage approach, designed to gradually expose the model to multimodal instructional-plans semantic layers, achieving strong performance on both multimodal and textual dialogue in a plan-grounded setting. Furthermore, we show that the model delivers cross-modal temporal and plan-structure representations aligned between textual plan steps and instructional video moments.
Abstract:This paper describes our approach to the SemEval-2024 safe biomedical Natural Language Inference for Clinical Trials (NLI4CT) task, which concerns classifying statements about Clinical Trial Reports (CTRs). We explored the capabilities of Mistral-7B, a generalist open-source Large Language Model (LLM). We developed a prompt for the NLI4CT task, and fine-tuned a quantized version of the model using an augmented version of the training dataset. The experimental results show that this approach can produce notable results in terms of the macro F1-score, while having limitations in terms of faithfulness and consistency. All the developed code is publicly available on a GitHub repository
Abstract:Sign Language Recognition has been studied and developed throughout the years to help the deaf and hard-of-hearing people in their day-to-day lives. These technologies leverage manual sign recognition algorithms, however, most of them lack the recognition of facial expressions, which are also an essential part of Sign Language as they allow the speaker to add expressiveness to their dialogue or even change the meaning of certain manual signs. SLVideo is a video moment retrieval software for Sign Language videos with a focus on both hands and facial signs. The system extracts embedding representations for the hand and face signs from video frames to capture the language signs in full. This will then allow the user to search for a specific sign language video segment with text queries, or to search by similar sign language videos. To test this system, a collection of five hours of annotated Sign Language videos is used as the dataset, and the initial results are promising in a zero-shot setting.SLVideo is shown to not only address the problem of searching sign language videos but also supports a Sign Language thesaurus with a search by similarity technique. Project web page: https://novasearch.github.io/SLVideo/
Abstract:This study investigates the existence of positional biases in Transformer-based models for text representation learning, particularly in the context of web document retrieval. We build on previous research that demonstrated loss of information in the middle of input sequences for causal language models, extending it to the domain of representation learning. We examine positional biases at various stages of training for an encoder-decoder model, including language model pre-training, contrastive pre-training, and contrastive fine-tuning. Experiments with the MS-MARCO document collection reveal that after contrastive pre-training the model already generates embeddings that better capture early contents of the input, with fine-tuning further aggravating this effect.
Abstract:Significant strides have been made in natural language tasks, largely attributed to the emergence of powerful large language models (LLMs). These models, pre-trained on extensive and diverse corpora, have become increasingly capable of comprehending the intricacies of language. Despite the abundance of LLMs for many high-resource languages, the availability of such models remains limited for European Portuguese. We introduce Gl\'orIA, a robust European Portuguese decoder LLM. To pre-train Gl\'orIA, we assembled a comprehensive PT-PT text corpus comprising 35 billion tokens from various sources. We present our pre-training methodology, followed by an assessment of the model's effectiveness on multiple downstream tasks. Additionally, to evaluate our models' language modeling capabilities, we introduce CALAME-PT (Context-Aware LAnguage Modeling Evaluation for Portuguese), the first Portuguese zero-shot language-modeling benchmark. Evaluation shows that Gl\'orIA significantly outperforms existing open PT decoder models in language modeling and that it can generate sound, knowledge-rich, and coherent PT-PT text. The model also exhibits strong potential for various downstream tasks.
Abstract:Image captioning and cross-modal retrieval are examples of tasks that involve the joint analysis of visual and linguistic information. In connection to remote sensing imagery, these tasks can help non-expert users in extracting relevant Earth observation information for a variety of applications. Still, despite some previous efforts, the development and application of vision and language models to the remote sensing domain have been hindered by the relatively small size of the available datasets and models used in previous studies. In this work, we propose RS-CapRet, a Vision and Language method for remote sensing tasks, in particular image captioning and text-image retrieval. We specifically propose to use a highly capable large decoder language model together with image encoders adapted to remote sensing imagery through contrastive language-image pre-training. To bridge together the image encoder and language decoder, we propose training simple linear layers with examples from combining different remote sensing image captioning datasets, keeping the other parameters frozen. RS-CapRet can then generate descriptions for remote sensing images and retrieve images from textual descriptions, achieving SOTA or competitive performance with existing methods. Qualitative results illustrate that RS-CapRet can effectively leverage the pre-trained large language model to describe remote sensing images, retrieve them based on different types of queries, and also show the ability to process interleaved sequences of images and text in a dialogue manner.
Abstract:Training Large Language Models (LLMs) to follow user instructions has been shown to supply the LLM with ample capacity to converse fluently while being aligned with humans. Yet, it is not completely clear how an LLM can lead a plan-grounded conversation in mixed-initiative settings where instructions flow in both directions of the conversation, i.e. both the LLM and the user provide instructions to one another. In this paper, we tackle a dual goal mixed-initiative conversational setting where the LLM not only grounds the conversation on an arbitrary plan but also seeks to satisfy both a procedural plan and user instructions. The LLM is then responsible for guiding the user through the plan and, at the same time, adapting to new circumstances, answering questions, and activating safety guardrails when needed. We propose a novel LLM that grounds the dialogue on a procedural plan, can take the dialogue initiative, and enforces guardrails on the system's behavior, while also improving the LLM's responses to unexpected user behavior. Experiments in controlled settings and with real users show that the best-performing model, which we call PlanLLM, achieves a 2.1x improvement over a strong baseline. Moreover, experiments also show good generalization to unseen domains.
Abstract:In this report, we describe the vision, challenges, and scientific contributions of the Task Wizard team, TWIZ, in the Alexa Prize TaskBot Challenge 2022. Our vision, is to build TWIZ bot as an helpful, multimodal, knowledgeable, and engaging assistant that can guide users towards the successful completion of complex manual tasks. To achieve this, we focus our efforts on three main research questions: (1) Humanly-Shaped Conversations, by providing information in a knowledgeable way; (2) Multimodal Stimulus, making use of various modalities including voice, images, and videos; and (3) Zero-shot Conversational Flows, to improve the robustness of the interaction to unseen scenarios. TWIZ is an assistant capable of supporting a wide range of tasks, with several innovative features such as creative cooking, video navigation through voice, and the robust TWIZ-LLM, a Large Language Model trained for dialoguing about complex manual tasks. Given ratings and feedback provided by users, we observed that TWIZ bot is an effective and robust system, capable of guiding users through tasks while providing several multimodal stimuli.
Abstract:Following complex instructions in conversational assistants can be quite daunting due to the shorter attention and memory spans when compared to reading the same instructions. Hence, when conversational assistants walk users through the steps of complex tasks, there is a need to structure the task into manageable pieces of information of the right length and complexity. In this paper, we tackle the recipes domain and convert reading structured instructions into conversational structured ones. We annotated the structure of instructions according to a conversational scenario, which provided insights into what is expected in this setting. To computationally model the conversational step's characteristics, we tested various Transformer-based architectures, showing that a token-based approach delivers the best results. A further user study showed that users tend to favor steps of manageable complexity and length, and that the proposed methodology can improve the original web-based instructional text. Specifically, 86% of the evaluated tasks were improved from a conversational suitability point of view.