Abstract:Guiding users through complex procedural plans is an inherently multimodal task in which having visually illustrated plan steps is crucial to deliver an effective plan guidance. However, existing works on plan-following language models (LMs) often are not capable of multimodal input and output. In this work, we present MM-PlanLLM, the first multimodal LLM designed to assist users in executing instructional tasks by leveraging both textual plans and visual information. Specifically, we bring cross-modality through two key tasks: Conversational Video Moment Retrieval, where the model retrieves relevant step-video segments based on user queries, and Visually-Informed Step Generation, where the model generates the next step in a plan, conditioned on an image of the user's current progress. MM-PlanLLM is trained using a novel multitask-multistage approach, designed to gradually expose the model to multimodal instructional-plans semantic layers, achieving strong performance on both multimodal and textual dialogue in a plan-grounded setting. Furthermore, we show that the model delivers cross-modal temporal and plan-structure representations aligned between textual plan steps and instructional video moments.
Abstract:Multistep instructions, such as recipes and how-to guides, greatly benefit from visual aids, such as a series of images that accompany the instruction steps. While Large Language Models (LLMs) have become adept at generating coherent textual steps, Large Vision/Language Models (LVLMs) are less capable of generating accompanying image sequences. The most challenging aspect is that each generated image needs to adhere to the relevant textual step instruction, as well as be visually consistent with earlier images in the sequence. To address this problem, we propose an approach for generating consistent image sequences, which integrates a Latent Diffusion Model (LDM) with an LLM to transform the sequence into a caption to maintain the semantic coherence of the sequence. In addition, to maintain the visual coherence of the image sequence, we introduce a copy mechanism to initialise reverse diffusion processes with a latent vector iteration from a previously generated image from a relevant step. Both strategies will condition the reverse diffusion process on the sequence of instruction steps and tie the contents of the current image to previous instruction steps and corresponding images. Experiments show that the proposed approach is preferred by humans in 46.6% of the cases against 26.6% for the second best method. In addition, automatic metrics showed that the proposed method maintains semantic coherence and visual consistency across steps in both domains.
Abstract:Training Large Language Models (LLMs) to follow user instructions has been shown to supply the LLM with ample capacity to converse fluently while being aligned with humans. Yet, it is not completely clear how an LLM can lead a plan-grounded conversation in mixed-initiative settings where instructions flow in both directions of the conversation, i.e. both the LLM and the user provide instructions to one another. In this paper, we tackle a dual goal mixed-initiative conversational setting where the LLM not only grounds the conversation on an arbitrary plan but also seeks to satisfy both a procedural plan and user instructions. The LLM is then responsible for guiding the user through the plan and, at the same time, adapting to new circumstances, answering questions, and activating safety guardrails when needed. We propose a novel LLM that grounds the dialogue on a procedural plan, can take the dialogue initiative, and enforces guardrails on the system's behavior, while also improving the LLM's responses to unexpected user behavior. Experiments in controlled settings and with real users show that the best-performing model, which we call PlanLLM, achieves a 2.1x improvement over a strong baseline. Moreover, experiments also show good generalization to unseen domains.