Abstract:Super-resolution algorithms often struggle with images from surveillance environments due to adverse conditions such as unknown degradation, variations in pose, irregular illumination, and occlusions. However, acquiring multiple images, even of low quality, is possible with surveillance cameras. In this work, we develop an algorithm based on diffusion models that utilize a low-resolution image combined with features extracted from multiple low-quality images to generate a super-resolved image while minimizing distortions in the individual's identity. Unlike other algorithms, our approach recovers facial features without explicitly providing attribute information or without the need to calculate a gradient of a function during the reconstruction process. To the best of our knowledge, this is the first time multi-features combined with low-resolution images are used as conditioners to generate more reliable super-resolution images using stochastic differential equations. The FFHQ dataset was employed for training, resulting in state-of-the-art performance in facial recognition and verification metrics when evaluated on the CelebA and Quis-Campi datasets. Our code is publicly available at https://github.com/marcelowds/fasr
Abstract:Contrastive Analysis (CA) regards the problem of identifying patterns in images that allow distinguishing between a background (BG) dataset (i.e. healthy subjects) and a target (TG) dataset (i.e. unhealthy subjects). Recent works on this topic rely on variational autoencoders (VAE) or contrastive learning strategies to learn the patterns that separate TG samples from BG samples in a supervised manner. However, the dependency on target (unhealthy) samples can be challenging in medical scenarios due to their limited availability. Also, the blurred reconstructions of VAEs lack utility and interpretability. In this work, we redefine the CA task by employing a self-supervised contrastive encoder to learn a latent representation encoding only common patterns from input images, using samples exclusively from the BG dataset during training, and approximating the distribution of the target patterns by leveraging data augmentation techniques. Subsequently, we exploit state-of-the-art generative methods, i.e. diffusion models, conditioned on the learned latent representation to produce a realistic (healthy) version of the input image encoding solely the common patterns. Thorough validation on a facial image dataset and experiments across three brain MRI datasets demonstrate that conditioning the generative process of state-of-the-art generative methods with the latent representation from our self-supervised contrastive encoder yields improvements in the generated image quality and in the accuracy of image classification. The code is available at https://github.com/CristianoPatricio/unsupervised-contrastive-cond-diff.
Abstract:Concept-based models naturally lend themselves to the development of inherently interpretable skin lesion diagnosis, as medical experts make decisions based on a set of visual patterns of the lesion. Nevertheless, the development of these models depends on the existence of concept-annotated datasets, whose availability is scarce due to the specialized knowledge and expertise required in the annotation process. In this work, we show that vision-language models can be used to alleviate the dependence on a large number of concept-annotated samples. In particular, we propose an embedding learning strategy to adapt CLIP to the downstream task of skin lesion classification using concept-based descriptions as textual embeddings. Our experiments reveal that vision-language models not only attain better accuracy when using concepts as textual embeddings, but also require a smaller number of concept-annotated samples to attain comparable performance to approaches specifically devised for automatic concept generation.
Abstract:Early detection of melanoma is crucial for preventing severe complications and increasing the chances of successful treatment. Existing deep learning approaches for melanoma skin lesion diagnosis are deemed black-box models, as they omit the rationale behind the model prediction, compromising the trustworthiness and acceptability of these diagnostic methods. Attempts to provide concept-based explanations are based on post-hoc approaches, which depend on an additional model to derive interpretations. In this paper, we propose an inherently interpretable framework to improve the interpretability of concept-based models by incorporating a hard attention mechanism and a coherence loss term to assure the visual coherence of concept activations by the concept encoder, without requiring the supervision of additional annotations. The proposed framework explains its decision in terms of human-interpretable concepts and their respective contribution to the final prediction, as well as a visual interpretation of the locations where the concept is present in the image. Experiments on skin image datasets demonstrate that our method outperforms existing black-box and concept-based models for skin lesion classification.
Abstract:The remarkable success of deep learning has prompted interest in its application to medical diagnosis. Even tough state-of-the-art deep learning models have achieved human-level accuracy on the classification of different types of medical data, these models are hardly adopted in clinical workflows, mainly due to their lack of interpretability. The black-box-ness of deep learning models has raised the need for devising strategies to explain the decision process of these models, leading to the creation of the topic of eXplainable Artificial Intelligence (XAI). In this context, we provide a thorough survey of XAI applied to medical diagnosis, including visual, textual, and example-based explanation methods. Moreover, this work reviews the existing medical imaging datasets and the existing metrics for evaluating the quality of the explanations . Complementary to most existing surveys, we include a performance comparison among a set of report generation-based methods. Finally, the major challenges in applying XAI to medical imaging are also discussed.
Abstract:The availability of large-scale facial databases, together with the remarkable progresses of deep learning technologies, in particular Generative Adversarial Networks (GANs), have led to the generation of extremely realistic fake facial content, which raises obvious concerns about the potential for misuse. These concerns have fostered the research of manipulation detection methods that, contrary to humans, have already achieved astonishing results in some scenarios. In this study, we focus on the entire face synthesis, which is one specific type of facial manipulation. The main contributions of this study are: i) a novel strategy to remove GAN "fingerprints" from synthetic fake images in order to spoof facial manipulation detection systems, while keeping the visual quality of the resulting images, ii) an in-depth analysis of state-of-the-art detection approaches for the entire face synthesis manipulation, iii) a complete experimental assessment of this type of facial manipulation considering state-of-the-art detection systems, remarking how challenging is this task in unconstrained scenarios, and finally iv) a novel public database named FSRemovalDB produced after applying our proposed GAN-fingerprint removal approach to original synthetic fake images. The observed results led us to conclude that more efforts are required to develop robust facial manipulation detection systems against unseen conditions and spoof techniques such as the one proposed in this study.