Abstract:Laplacian learning method is a well-established technique in classical graph-based semi-supervised learning, but its potential in the quantum domain remains largely unexplored. This study investigates the performance of the Laplacian-based Quantum Semi-Supervised Learning (QSSL) method across four benchmark datasets -- Iris, Wine, Breast Cancer Wisconsin, and Heart Disease. Further analysis explores the impact of increasing Qubit counts, revealing that adding more Qubits to a quantum system doesn't always improve performance. The effectiveness of additional Qubits depends on the quantum algorithm and how well it matches the dataset. Additionally, we examine the effects of varying entangling layers on entanglement entropy and test accuracy. The performance of Laplacian learning is highly dependent on the number of entangling layers, with optimal configurations varying across different datasets. Typically, moderate levels of entanglement offer the best balance between model complexity and generalization capabilities. These observations highlight the crucial need for precise hyperparameter tuning tailored to each dataset to achieve optimal performance in Laplacian learning methods.
Abstract:Large vision models based in deep learning architectures have been consistently advancing the state-of-the-art in biometric recognition. However, three weaknesses are commonly reported for such kind of approaches: 1) their extreme demands in terms of learning data; 2) the difficulties in generalising between different domains; and 3) the lack of interpretability/explainability, with biometrics being of particular interest, as it is important to provide evidence able to be used for forensics/legal purposes (e.g., in courts). To the best of our knowledge, this paper describes the first recognition framework/strategy that aims at addressing the three weaknesses simultaneously. At first, it relies exclusively in synthetic samples for learning purposes. Instead of requiring a large amount and variety of samples for each subject, the idea is to exclusively enroll a 3D point cloud per identity. Then, using generative strategies, we synthesize a very large (potentially infinite) number of samples, containing all the desired covariates (poses, clothing, distances, perspectives, lighting, occlusions,...). Upon the synthesizing method used, it is possible to adapt precisely to different kind of domains, which accounts for generalization purposes. Such data are then used to learn a model that performs local registration between image pairs, establishing positive correspondences between body parts that are the key, not only to recognition (according to cardinality and distribution), but also to provide an interpretable description of the response (e.g.: "both samples are from the same person, as they have similar facial shape, hair color and legs thickness").
Abstract:Deep Learning is currently used to perform multiple tasks, such as object recognition, face recognition, and natural language processing. However, Deep Neural Networks (DNNs) are vulnerable to perturbations that alter the network prediction (adversarial examples), raising concerns regarding its usage in critical areas, such as self-driving vehicles, malware detection, and healthcare. This paper compiles the most recent adversarial attacks, grouped by the attacker capacity, and modern defenses clustered by protection strategies. We also present the new advances regarding Vision Transformers, summarize the datasets and metrics used in the context of adversarial settings, and compare the state-of-the-art results under different attacks, finishing with the identification of open issues.
Abstract:Current Active Speaker Detection (ASD) models achieve great results on AVA-ActiveSpeaker (AVA), using only sound and facial features. Although this approach is applicable in movie setups (AVA), it is not suited for less constrained conditions. To demonstrate this limitation, we propose a Wilder Active Speaker Detection (WASD) dataset, with increased difficulty by targeting the two key components of current ASD: audio and face. Grouped into 5 categories, ranging from optimal conditions to surveillance settings, WASD contains incremental challenges for ASD with tactical impairment of audio and face data. We select state-of-the-art models and assess their performance in two groups of WASD: Easy (cooperative settings) and Hard (audio and/or face are specifically degraded). The results show that: 1) AVA trained models maintain a state-of-the-art performance in WASD Easy group, while underperforming in the Hard one, showing the 2) similarity between AVA and Easy data; and 3) training in WASD does not improve models performance to AVA levels, particularly for audio impairment and surveillance settings. This shows that AVA does not prepare models for wild ASD and current approaches are subpar to deal with such conditions. The proposed dataset also contains body data annotations to provide a new source for ASD, and is available at https://github.com/Tiago-Roxo/WASD.
Abstract:Periocular refers to the region of the face that surrounds the eye socket. This is a feature-rich area that can be used by itself to determine the identity of an individual. It is especially useful when the iris or the face cannot be reliably acquired. This can be the case of unconstrained or uncooperative scenarios, where the face may appear partially occluded, or the subject-to-camera distance may be high. However, it has received revived attention during the pandemic due to masked faces, leaving the ocular region as the only visible facial area, even in controlled scenarios. This paper discusses the state-of-the-art of periocular biometrics, giving an overall framework of its most significant research aspects.
Abstract:In this survey, we provide a comprehensive review of more than 200 papers, technical reports, and GitHub repositories published over the last 10 years on the recent developments of deep learning techniques for iris recognition, covering broad topics on algorithm designs, open-source tools, open challenges, and emerging research. First, we conduct a comprehensive analysis of deep learning techniques developed for two main sub-tasks in iris biometrics: segmentation and recognition. Second, we focus on deep learning techniques for the robustness of iris recognition systems against presentation attacks and via human-machine pairing. Third, we delve deep into deep learning techniques for forensic application, especially in post-mortem iris recognition. Fourth, we review open-source resources and tools in deep learning techniques for iris recognition. Finally, we highlight the technical challenges, emerging research trends, and outlook for the future of deep learning in iris recognition.
Abstract:Diffusion models have proven effective for various applications such as images, audio and graph generation. Other important applications are image super-resolution and the solution of inverse problems. More recently, some works have used stochastic differential equations (SDEs) to generalize diffusion models to continuous time. In this work, we introduce SDEs to generate super-resolution face images. To the best of our knowledge, this is the first time SDEs have been used for such an application. The proposed method provides an improved peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and consistency than the existing super-resolution methods based on diffusion models. In particular, we also assess the potential application of this method for the face recognition task. A generic facial feature extractor is used to compare the super-resolution images with the ground truth and superior results were obtained compared with other methods. Our code is publicly available at https://github.com/marcelowds/sr-sde
Abstract:Synthesising the spatial and temporal dynamics of the human body skeleton remains a challenging task, not only in terms of the quality of the generated shapes, but also of their diversity, particularly to synthesise realistic body movements of a specific action (action conditioning). In this paper, we propose Kinetic-GAN, a novel architecture that leverages the benefits of Generative Adversarial Networks and Graph Convolutional Networks to synthesise the kinetics of the human body. The proposed adversarial architecture can condition up to 120 different actions over local and global body movements while improving sample quality and diversity through latent space disentanglement and stochastic variations. Our experiments were carried out in three well-known datasets, where Kinetic-GAN notably surpasses the state-of-the-art methods in terms of distribution quality metrics while having the ability to synthesise more than one order of magnitude regarding the number of different actions. Our code and models are publicly available at https://github.com/DegardinBruno/Kinetic-GAN.
Abstract:Soft biometrics inference in surveillance scenarios is a topic of interest for various applications, particularly in security-related areas. However, soft biometric analysis is not extensively reported in wild conditions. In particular, previous works on gender recognition report their results in face datasets, with relatively good image quality and frontal poses. Given the uncertainty of the availability of the facial region in wild conditions, we consider that these methods are not adequate for surveillance settings. To overcome these limitations, we: 1) present frontal and wild face versions of three well-known surveillance datasets; and 2) propose a model that effectively and dynamically combines facial and body information, which makes it suitable for gender recognition in wild conditions. The frontal and wild face datasets derive from widely used Pedestrian Attribute Recognition (PAR) sets (PETA, PA-100K, and RAP), using a pose-based approach to filter the frontal samples and facial regions. This approach retrieves the facial region of images with varying image/subject conditions, where the state-of-the-art face detectors often fail. Our model combines facial and body information through a learnable fusion matrix and a channel-attention sub-network, focusing on the most influential body parts according to the specific image/subject features. We compare it with five PAR methods, consistently obtaining state-of-the-art results on gender recognition, and reducing the prediction errors by up to 24% in frontal samples. The announced PAR datasets versions and model serve as the basis for wild soft biometrics classification and are available in https://github.com/Tiago-Roxo.
Abstract:It is known that the kinematics of the human body skeleton reveals valuable information in action recognition. Recently, modeling skeletons as spatio-temporal graphs with Graph Convolutional Networks (GCNs) has been reported to solidly advance the state-of-the-art performance. However, GCN-based approaches exclusively learn from raw skeleton data, and are expected to extract the inherent structural information on their own. This paper describes REGINA, introducing a novel way to REasoning Graph convolutional networks IN Human Action recognition. The rationale is to provide to the GCNs additional knowledge about the skeleton data, obtained by handcrafted features, in order to facilitate the learning process, while guaranteeing that it remains fully trainable in an end-to-end manner. The challenge is to capture complementary information over the dynamics between consecutive frames, which is the key information extracted by state-of-the-art GCN techniques. Moreover, the proposed strategy can be easily integrated in the existing GCN-based methods, which we also regard positively. Our experiments were carried out in well known action recognition datasets and enabled to conclude that REGINA contributes for solid improvements in performance when incorporated to other GCN-based approaches, without any other adjustment regarding the original method. For reproducibility, the REGINA code and all the experiments carried out will be publicly available at https://github.com/DegardinBruno.