Abstract:Deep Learning is currently used to perform multiple tasks, such as object recognition, face recognition, and natural language processing. However, Deep Neural Networks (DNNs) are vulnerable to perturbations that alter the network prediction (adversarial examples), raising concerns regarding its usage in critical areas, such as self-driving vehicles, malware detection, and healthcare. This paper compiles the most recent adversarial attacks, grouped by the attacker capacity, and modern defenses clustered by protection strategies. We also present the new advances regarding Vision Transformers, summarize the datasets and metrics used in the context of adversarial settings, and compare the state-of-the-art results under different attacks, finishing with the identification of open issues.
Abstract:Current Active Speaker Detection (ASD) models achieve great results on AVA-ActiveSpeaker (AVA), using only sound and facial features. Although this approach is applicable in movie setups (AVA), it is not suited for less constrained conditions. To demonstrate this limitation, we propose a Wilder Active Speaker Detection (WASD) dataset, with increased difficulty by targeting the two key components of current ASD: audio and face. Grouped into 5 categories, ranging from optimal conditions to surveillance settings, WASD contains incremental challenges for ASD with tactical impairment of audio and face data. We select state-of-the-art models and assess their performance in two groups of WASD: Easy (cooperative settings) and Hard (audio and/or face are specifically degraded). The results show that: 1) AVA trained models maintain a state-of-the-art performance in WASD Easy group, while underperforming in the Hard one, showing the 2) similarity between AVA and Easy data; and 3) training in WASD does not improve models performance to AVA levels, particularly for audio impairment and surveillance settings. This shows that AVA does not prepare models for wild ASD and current approaches are subpar to deal with such conditions. The proposed dataset also contains body data annotations to provide a new source for ASD, and is available at https://github.com/Tiago-Roxo/WASD.