Abstract:Text simplification aims to make the text easier to understand by applying rewriting transformations. There has been very little research on Chinese text simplification for a long time. The lack of generic evaluation data is an essential reason for this phenomenon. In this paper, we introduce MCTS, a multi-reference Chinese text simplification dataset. We describe the annotation process of the dataset and provide a detailed analysis of it. Furthermore, we evaluate the performance of some unsupervised methods and advanced large language models. We hope to build a basic understanding of Chinese text simplification through the foundational work and provide references for future research. We release our data at https://github.com/blcuicall/mcts.
Abstract:The introduction of ChatGPT has garnered widespread attention in both academic and industrial communities. ChatGPT is able to respond effectively to a wide range of human questions, providing fluent and comprehensive answers that significantly surpass previous public chatbots in terms of security and usefulness. On one hand, people are curious about how ChatGPT is able to achieve such strength and how far it is from human experts. On the other hand, people are starting to worry about the potential negative impacts that large language models (LLMs) like ChatGPT could have on society, such as fake news, plagiarism, and social security issues. In this work, we collected tens of thousands of comparison responses from both human experts and ChatGPT, with questions ranging from open-domain, financial, medical, legal, and psychological areas. We call the collected dataset the Human ChatGPT Comparison Corpus (HC3). Based on the HC3 dataset, we study the characteristics of ChatGPT's responses, the differences and gaps from human experts, and future directions for LLMs. We conducted comprehensive human evaluations and linguistic analyses of ChatGPT-generated content compared with that of humans, where many interesting results are revealed. After that, we conduct extensive experiments on how to effectively detect whether a certain text is generated by ChatGPT or humans. We build three different detection systems, explore several key factors that influence their effectiveness, and evaluate them in different scenarios. The dataset, code, and models are all publicly available at https://github.com/Hello-SimpleAI/chatgpt-comparison-detection.
Abstract:Text generation rarely considers the control of lexical complexity, which limits its more comprehensive practical application. We introduce a novel task of lexical complexity controlled sentence generation, which aims at keywords to sentence generation with desired complexity levels. It has enormous potential in domains such as grade reading, language teaching and acquisition. The challenge of this task is to generate fluent sentences only using the words of given complexity levels. We propose a simple but effective approach for this task based on complexity embedding. Compared with potential solutions, our approach fuses the representations of the word complexity levels into the model to get better control of lexical complexity. And we demonstrate the feasibility of the approach for both training models from scratch and fine-tuning the pre-trained models. To facilitate the research, we develop two datasets in English and Chinese respectively, on which extensive experiments are conducted. Results show that our approach better controls lexical complexity and generates higher quality sentences than baseline methods.
Abstract:Realizing general-purpose language intelligence has been a longstanding goal for natural language processing, where standard evaluation benchmarks play a fundamental and guiding role. We argue that for general-purpose language intelligence evaluation, the benchmark itself needs to be comprehensive and systematic. To this end, we propose CUGE, a Chinese Language Understanding and Generation Evaluation benchmark with the following features: (1) Hierarchical benchmark framework, where datasets are principally selected and organized with a language capability-task-dataset hierarchy. (2) Multi-level scoring strategy, where different levels of model performance are provided based on the hierarchical framework. To facilitate CUGE, we provide a public leaderboard that can be customized to support flexible model judging criteria. Evaluation results on representative pre-trained language models indicate ample room for improvement towards general-purpose language intelligence. CUGE is publicly available at cuge.baai.ac.cn.