Abstract:The current generation of large language models (LLMs) is typically designed for broad, general-purpose applications, while domain-specific LLMs, especially in vertical fields like medicine, remain relatively scarce. In particular, the development of highly efficient and practical LLMs for the medical domain is challenging due to the complexity of medical knowledge and the limited availability of high-quality data. To bridge this gap, we introduce Baichuan-M1, a series of large language models specifically optimized for medical applications. Unlike traditional approaches that simply continue pretraining on existing models or apply post-training to a general base model, Baichuan-M1 is trained from scratch with a dedicated focus on enhancing medical capabilities. Our model is trained on 20 trillion tokens and incorporates a range of effective training methods that strike a balance between general capabilities and medical expertise. As a result, Baichuan-M1 not only performs strongly across general domains such as mathematics and coding but also excels in specialized medical fields. We have open-sourced Baichuan-M1-14B, a mini version of our model, which can be accessed through the following links.
Abstract:We introduce Baichuan-Omni-1.5, an omni-modal model that not only has omni-modal understanding capabilities but also provides end-to-end audio generation capabilities. To achieve fluent and high-quality interaction across modalities without compromising the capabilities of any modality, we prioritized optimizing three key aspects. First, we establish a comprehensive data cleaning and synthesis pipeline for multimodal data, obtaining about 500B high-quality data (text, audio, and vision). Second, an audio-tokenizer (Baichuan-Audio-Tokenizer) has been designed to capture both semantic and acoustic information from audio, enabling seamless integration and enhanced compatibility with MLLM. Lastly, we designed a multi-stage training strategy that progressively integrates multimodal alignment and multitask fine-tuning, ensuring effective synergy across all modalities. Baichuan-Omni-1.5 leads contemporary models (including GPT4o-mini and MiniCPM-o 2.6) in terms of comprehensive omni-modal capabilities. Notably, it achieves results comparable to leading models such as Qwen2-VL-72B across various multimodal medical benchmarks.
Abstract:Hosting diverse large language model workloads in a unified resource pool through co-location is cost-effective. For example, long-running chat services generally follow diurnal traffic patterns, which inspire co-location of batch jobs to fulfill resource valleys between successive peaks, and thus to saturate resource allocation in cluster-wide scope. These heterogeneous workloads often have different business priorities, and therefore preemption can be leveraged for resource elasticity. However, workloads often have distinct topology preferences as well. The resources released by lower-priority instances may fail to meet the requirements of high-priority online services which are usually latency-sensitive. The root cause behind such mis-match is a lack of topology awareness of resource scheduler, especially during preemption. To bridge this gap, we develop a fine-grained topology-aware method for preemptive scheduling of hybrid workloads. The method ensures that the resources freed by preempted tasks adhere to the topological affinity needs of high-priority preemptors in a guaranteed or best-effort manner. This dynamic alignment significantly increases the efficiency of preemption and improves overall scheduled performance for LLM workloads by $55\%$.