Abstract:Several types of spoofed audio, such as mimicry, replay attacks, and deepfakes, have created societal challenges to information integrity. Recently, researchers have worked with sociolinguistics experts to label spoofed audio samples with Expert Defined Linguistic Features (EDLFs) that can be discerned by the human ear: pitch, pause, word-initial and word-final release bursts of consonant stops, audible intake or outtake of breath, and overall audio quality. It is established that there is an improvement in several deepfake detection algorithms when they augmented the traditional and common features of audio data with these EDLFs. In this paper, using a hybrid dataset comprised of multiple types of spoofed audio augmented with sociolinguistic annotations, we investigate causal discovery and inferences between the discernible linguistic features and the label in the audio clips, comparing the findings of the causal models with the expert ground truth validation labeling process. Our findings suggest that the causal models indicate the utility of incorporating linguistic features to help discern spoofed audio, as well as the overall need and opportunity to incorporate human knowledge into models and techniques for strengthening AI models. The causal discovery and inference can be used as a foundation of training humans to discern spoofed audio as well as automating EDLFs labeling for the purpose of performance improvement of the common AI-based spoofed audio detectors.
Abstract:Atmospheric gravity waves occur in the Earths atmosphere caused by an interplay between gravity and buoyancy forces. These waves have profound impacts on various aspects of the atmosphere, including the patterns of precipitation, cloud formation, ozone distribution, aerosols, and pollutant dispersion. Therefore, understanding gravity waves is essential to comprehend and monitor changes in a wide range of atmospheric behaviors. Limited studies have been conducted to identify gravity waves from satellite data using machine learning techniques. Particularly, without applying noise removal techniques, it remains an underexplored area of research. This study presents a novel kernel design aimed at identifying gravity waves within satellite images. The proposed kernel is seamlessly integrated into a deep convolutional neural network, denoted as gWaveNet. Our proposed model exhibits impressive proficiency in detecting images containing gravity waves from noisy satellite data without any feature engineering. The empirical results show our model outperforms related approaches by achieving over 98% training accuracy and over 94% test accuracy which is known to be the best result for gravity waves detection up to the time of this work. We open sourced our code at https://rb.gy/qn68ku.
Abstract:Spatial interference (SI) occurs when the treatment at one location affects the outcomes at other locations. Accounting for spatial interference in spatiotemporal settings poses further challenges as interference violates the stable unit treatment value assumption, making it infeasible for standard causal inference methods to quantify the effects of time-varying treatment at spatially varying outcomes. In this paper, we first formalize the concept of spatial interference in case of time-varying treatment assignments by extending the potential outcome framework under the assumption of no unmeasured confounding. We then propose our deep learning based potential outcome model for spatiotemporal causal inference. We utilize latent factor modeling to reduce the bias due to time-varying confounding while leveraging the power of U-Net architecture to capture global and local spatial interference in data over time. Our causal estimators are an extension of average treatment effect (ATE) for estimating direct (DATE) and indirect effects (IATE) of spatial interference on treated and untreated data. Being the first of its kind deep learning based spatiotemporal causal inference technique, our approach shows advantages over several baseline methods based on the experiment results on two synthetic datasets, with and without spatial interference. Our results on real-world climate dataset also align with domain knowledge, further demonstrating the effectiveness of our proposed method.
Abstract:Ocean eddies play a significant role both on the sea surface and beneath it, contributing to the sustainability of marine life dependent on oceanic behaviors. Therefore, it is crucial to investigate ocean eddies to monitor changes in the Earth, particularly in the oceans, and their impact on climate. This study aims to pinpoint ocean eddies using AWS cloud services, specifically SageMaker. The primary objective is to detect small-scale (<20km) ocean eddies from satellite remote images and assess the feasibility of utilizing SageMaker, which offers tools for deploying AI applications. Moreover, this research not only explores the deployment of cloud-based services for remote sensing of Earth data but also evaluates several YOLO (You Only Look Once) models using single and multi-GPU-based services in the cloud. Furthermore, this study underscores the potential of these services, their limitations, challenges related to deployment and resource management, and their user-riendliness for Earth science projects.
Abstract:This survey paper covers the breadth and depth of time-series and spatiotemporal causality methods, and their applications in Earth Science. More specifically, the paper presents an overview of causal discovery and causal inference, explains the underlying causal assumptions, and enlists evaluation techniques and key terminologies of the domain area. The paper elicits the various state-of-the-art methods introduced for time-series and spatiotemporal causal analysis along with their strengths and limitations. The paper further describes the existing applications of several methods for answering specific Earth Science questions such as extreme weather events, sea level rise, teleconnections etc. This survey paper can serve as a primer for Data Science researchers interested in data-driven causal study as we share a list of resources, such as Earth Science datasets (synthetic, simulated and observational data) and open source tools for causal analysis. It will equally benefit the Earth Science community interested in taking an AI-driven approach to study the causality of different dynamic and thermodynamic processes as we present the open challenges and opportunities in performing causality-based Earth Science study.
Abstract:The growing availability and importance of time series data across various domains, including environmental science, epidemiology, and economics, has led to an increasing need for time-series causal discovery methods that can identify the intricate relationships in the non-stationary, non-linear, and often noisy real world data. However, the majority of current time series causal discovery methods assume stationarity and linear relations in data, making them infeasible for the task. Further, the recent deep learning-based methods rely on the traditional causal structure learning approaches making them computationally expensive. In this paper, we propose a Time-Series Causal Neural Network (TS-CausalNN) - a deep learning technique to discover contemporaneous and lagged causal relations simultaneously. Our proposed architecture comprises (i) convolutional blocks comprising parallel custom causal layers, (ii) acyclicity constraint, and (iii) optimization techniques using the augmented Lagrangian approach. In addition to the simple parallel design, an advantage of the proposed model is that it naturally handles the non-stationarity and non-linearity of the data. Through experiments on multiple synthetic and real world datasets, we demonstrate the empirical proficiency of our proposed approach as compared to several state-of-the-art methods. The inferred graphs for the real world dataset are in good agreement with the domain understanding.
Abstract:In the realm of Earth science, effective cloud property retrieval, encompassing cloud masking, cloud phase classification, and cloud optical thickness (COT) prediction, remains pivotal. Traditional methodologies necessitate distinct models for each sensor instrument due to their unique spectral characteristics. Recent strides in Earth Science research have embraced machine learning and deep learning techniques to extract features from satellite datasets' spectral observations. However, prevailing approaches lack novel architectures accounting for hierarchical relationships among retrieval tasks. Moreover, considering the spectral diversity among existing sensors, the development of models with robust generalization capabilities over different sensor datasets is imperative. Surprisingly, there is a dearth of methodologies addressing the selection of an optimal model for diverse datasets. In response, this paper introduces MT-HCCAR, an end-to-end deep learning model employing multi-task learning to simultaneously tackle cloud masking, cloud phase retrieval (classification tasks), and COT prediction (a regression task). The MT-HCCAR integrates a hierarchical classification network (HC) and a classification-assisted attention-based regression network (CAR), enhancing precision and robustness in cloud labeling and COT prediction. Additionally, a comprehensive model selection method rooted in K-fold cross-validation, one standard error rule, and two introduced performance scores is proposed to select the optimal model over three simulated satellite datasets OCI, VIIRS, and ABI. The experiments comparing MT-HCCAR with baseline methods, the ablation studies, and the model selection affirm the superiority and the generalization capabilities of MT-HCCAR.
Abstract:Inter-city highway transportation is significant for urban life. As one of the key functions in intelligent transportation system (ITS), traffic evaluation always plays significant role nowadays, and daily traffic flow prediction still faces challenges at network-wide toll stations. On the one hand, the data imbalance in practice among various locations deteriorates the performance of prediction. On the other hand, complex correlative spatio-temporal factors cannot be comprehensively employed in long-term duration. In this paper, a prediction method is proposed for daily traffic flow in highway domain through spatio-temporal deep learning. In our method, data normalization strategy is used to deal with data imbalance, due to long-tail distribution of traffic flow at network-wide toll stations. And then, based on graph convolutional network, we construct networks in distinct semantics to capture spatio-temporal features. Beside that, meteorology and calendar features are used by our model in the full connection stage to extra external characteristics of traffic flow. By extensive experiments and case studies in one Chinese provincial highway, our method shows clear improvement in predictive accuracy than baselines and practical benefits in business.
Abstract:Arctic amplification has altered the climate patterns both regionally and globally, resulting in more frequent and more intense extreme weather events in the past few decades. The essential part of Arctic amplification is the unprecedented sea ice loss as demonstrated by satellite observations. Accurately forecasting Arctic sea ice from sub-seasonal to seasonal scales has been a major research question with fundamental challenges at play. In addition to physics-based Earth system models, researchers have been applying multiple statistical and machine learning models for sea ice forecasting. Looking at the potential of data-driven approaches to study sea ice variations, we propose MT-IceNet - a UNet based spatial and multi-temporal (MT) deep learning model for forecasting Arctic sea ice concentration (SIC). The model uses an encoder-decoder architecture with skip connections and processes multi-temporal input streams to regenerate spatial maps at future timesteps. Using bi-monthly and monthly satellite retrieved sea ice data from NSIDC as well as atmospheric and oceanic variables from ERA5 reanalysis product during 1979-2021, we show that our proposed model provides promising predictive performance for per-pixel SIC forecasting with up to 60% decrease in prediction error for a lead time of 6 months as compared to its state-of-the-art counterparts.
Abstract:Clustering high-dimensional spatiotemporal data using an unsupervised approach is a challenging problem for many data-driven applications. Existing state-of-the-art methods for unsupervised clustering use different similarity and distance functions but focus on either spatial or temporal features of the data. Concentrating on joint deep representation learning of spatial and temporal features, we propose Deep Spatiotemporal Clustering (DSC), a novel algorithm for the temporal clustering of high-dimensional spatiotemporal data using an unsupervised deep learning method. Inspired by the U-net architecture, DSC utilizes an autoencoder integrating CNN-RNN layers to learn latent representations of the spatiotemporal data. DSC also includes a unique layer for cluster assignment on latent representations that uses the Student's t-distribution. By optimizing the clustering loss and data reconstruction loss simultaneously, the algorithm gradually improves clustering assignments and the nonlinear mapping between low-dimensional latent feature space and high-dimensional original data space. A multivariate spatiotemporal climate dataset is used to evaluate the efficacy of the proposed method. Our extensive experiments show our approach outperforms both conventional and deep learning-based unsupervised clustering algorithms. Additionally, we compared the proposed model with its various variants (CNN encoder, CNN autoencoder, CNN-RNN encoder, CNN-RNN autoencoder, etc.) to get insight into using both the CNN and RNN layers in the autoencoder, and our proposed technique outperforms these variants in terms of clustering results.