Abstract:Situational awareness applications rely heavily on real-time processing of visual and textual data to provide actionable insights. Vision language models (VLMs) have become essential tools for interpreting complex environments by connecting visual inputs with natural language descriptions. However, these models often face computational challenges, especially when required to perform efficiently in real environments. This research presents a novel vision language model (VLM) framework that leverages frequency domain transformations and low-rank adaptation (LoRA) to enhance feature extraction, scalability, and efficiency. Unlike traditional VLMs, which rely solely on spatial-domain representations, our approach incorporates Discrete Fourier Transform (DFT) based low-rank features while retaining pretrained spatial weights, enabling robust performance in noisy or low visibility scenarios. We evaluated the proposed model on caption generation and Visual Question Answering (VQA) tasks using benchmark datasets with varying levels of Gaussian noise. Quantitative results demonstrate that our model achieves evaluation metrics comparable to state-of-the-art VLMs, such as CLIP ViT-L/14 and SigLIP. Qualitative analysis further reveals that our model provides more detailed and contextually relevant responses, particularly for real-world images captured by a RealSense camera mounted on an Unmanned Ground Vehicle (UGV).
Abstract:The Internet of Battlefield Things (IoBT) will advance the operational effectiveness of infantry units. However, this requires autonomous assets such as sensors, drones, combat equipment, and uncrewed vehicles to collaborate, securely share information, and be resilient to adversary attacks in contested multi-domain operations. CAPD addresses this problem by providing a context-aware, policy-driven framework supporting data and knowledge exchange among autonomous entities in a battlespace. We propose an IoBT ontology that facilitates controlled information sharing to enable semantic interoperability between systems. Its key contributions include providing a knowledge graph with a shared semantic schema, integration with background knowledge, efficient mechanisms for enforcing data consistency and drawing inferences, and supporting attribute-based access control. The sensors in the IoBT provide data that create populated knowledge graphs based on the ontology. This paper describes using CAPD to detect and mitigate adversary actions. CAPD enables situational awareness using reasoning over the sensed data and SPARQL queries. For example, adversaries can cause sensor failure or hijacking and disrupt the tactical networks to degrade video surveillance. In such instances, CAPD uses an ontology-based reasoner to see how alternative approaches can still support the mission. Depending on bandwidth availability, the reasoner initiates the creation of a reduced frame rate grayscale video by active transcoding or transmits only still images. This ability to reason over the mission sensed environment and attack context permits the autonomous IoBT system to exhibit resilience in contested conditions.