Abstract:Atmospheric gravity waves occur in the Earths atmosphere caused by an interplay between gravity and buoyancy forces. These waves have profound impacts on various aspects of the atmosphere, including the patterns of precipitation, cloud formation, ozone distribution, aerosols, and pollutant dispersion. Therefore, understanding gravity waves is essential to comprehend and monitor changes in a wide range of atmospheric behaviors. Limited studies have been conducted to identify gravity waves from satellite data using machine learning techniques. Particularly, without applying noise removal techniques, it remains an underexplored area of research. This study presents a novel kernel design aimed at identifying gravity waves within satellite images. The proposed kernel is seamlessly integrated into a deep convolutional neural network, denoted as gWaveNet. Our proposed model exhibits impressive proficiency in detecting images containing gravity waves from noisy satellite data without any feature engineering. The empirical results show our model outperforms related approaches by achieving over 98% training accuracy and over 94% test accuracy which is known to be the best result for gravity waves detection up to the time of this work. We open sourced our code at https://rb.gy/qn68ku.
Abstract:Ocean eddies play a significant role both on the sea surface and beneath it, contributing to the sustainability of marine life dependent on oceanic behaviors. Therefore, it is crucial to investigate ocean eddies to monitor changes in the Earth, particularly in the oceans, and their impact on climate. This study aims to pinpoint ocean eddies using AWS cloud services, specifically SageMaker. The primary objective is to detect small-scale (<20km) ocean eddies from satellite remote images and assess the feasibility of utilizing SageMaker, which offers tools for deploying AI applications. Moreover, this research not only explores the deployment of cloud-based services for remote sensing of Earth data but also evaluates several YOLO (You Only Look Once) models using single and multi-GPU-based services in the cloud. Furthermore, this study underscores the potential of these services, their limitations, challenges related to deployment and resource management, and their user-riendliness for Earth science projects.