Abstract:Diffusion model-generated images can appear indistinguishable from authentic photographs, but these images often contain artifacts and implausibilities that reveal their AI-generated provenance. Given the challenge to public trust in media posed by photorealistic AI-generated images, we conducted a large-scale experiment measuring human detection accuracy on 450 diffusion-model generated images and 149 real images. Based on collecting 749,828 observations and 34,675 comments from 50,444 participants, we find that scene complexity of an image, artifact types within an image, display time of an image, and human curation of AI-generated images all play significant roles in how accurately people distinguish real from AI-generated images. Additionally, we propose a taxonomy characterizing artifacts often appearing in images generated by diffusion models. Our empirical observations and taxonomy offer nuanced insights into the capabilities and limitations of diffusion models to generate photorealistic images in 2024.
Abstract:Humans and AIs are often paired on decision tasks with the expectation of achieving complementary performance, where the combination of human and AI outperforms either one alone. However, how to improve performance of a human-AI team is often not clear without knowing more about what particular information and strategies each agent employs. We provide a decision-theoretic framework for characterizing the value of information -- and consequently, opportunities for agents to better exploit available information--in AI-assisted decision workflow. We demonstrate the use of the framework for model selection, empirical evaluation of human-AI performance, and explanation design. We propose a novel information-based instance-level explanation technique that adapts a conventional saliency-based explanation to explain information value in decision making.
Abstract:Qualitative analysis is critical to understanding human datasets in many social science disciplines. Open coding is an inductive qualitative process that identifies and interprets "open codes" from datasets. Yet, meeting methodological expectations (such as "as exhaustive as possible") can be challenging. While many machine learning (ML)/generative AI (GAI) studies have attempted to support open coding, few have systematically measured or evaluated GAI outcomes, increasing potential bias risks. Building on Grounded Theory and Thematic Analysis theories, we present a computational method to measure and identify potential biases from "open codes" systematically. Instead of operationalizing human expert results as the "ground truth," our method is built upon a team-based approach between human and machine coders. We experiment with two HCI datasets to establish this method's reliability by 1) comparing it with human analysis, and 2) analyzing its output stability. We present evidence-based suggestions and example workflows for ML/GAI to support open coding.
Abstract:There is an increasing interest in using language models (LMs) for automated decision-making, with multiple countries actively testing LMs to aid in military crisis decision-making. To scrutinize relying on LM decision-making in high-stakes settings, we examine the inconsistency of responses in a crisis simulation ("wargame"), similar to reported tests conducted by the US military. Prior work illustrated escalatory tendencies and varying levels of aggression among LMs but were constrained to simulations with pre-defined actions. This was due to the challenges associated with quantitatively measuring semantic differences and evaluating natural language decision-making without relying on pre-defined actions. In this work, we query LMs for free form responses and use a metric based on BERTScore to measure response inconsistency quantitatively. Leveraging the benefits of BERTScore, we show that the inconsistency metric is robust to linguistic variations that preserve semantic meaning in a question-answering setting across text lengths. We show that all five tested LMs exhibit levels of inconsistency that indicate semantic differences, even when adjusting the wargame setting, anonymizing involved conflict countries, or adjusting the sampling temperature parameter $T$. Further qualitative evaluation shows that models recommend courses of action that share few to no similarities. We also study the impact of different prompt sensitivity variations on inconsistency at temperature $T = 0$. We find that inconsistency due to semantically equivalent prompt variations can exceed response inconsistency from temperature sampling for most studied models across different levels of ablations. Given the high-stakes nature of military deployment, we recommend further consideration be taken before using LMs to inform military decisions or other cases of high-stakes decision-making.
Abstract:Research in Responsible AI has developed a range of principles and practices to ensure that machine learning systems are used in a manner that is ethical and aligned with human values. However, a critical yet often neglected aspect of ethical ML is the ethical implications that appear when designing evaluations of ML systems. For instance, teams may have to balance a trade-off between highly informative tests to ensure downstream product safety, with potential fairness harms inherent to the implemented testing procedures. We conceptualize ethics-related concerns in standard ML evaluation techniques. Specifically, we present a utility framework, characterizing the key trade-off in ethical evaluation as balancing information gain against potential ethical harms. The framework is then a tool for characterizing challenges teams face, and systematically disentangling competing considerations that teams seek to balance. Differentiating between different types of issues encountered in evaluation allows us to highlight best practices from analogous domains, such as clinical trials and automotive crash testing, which navigate these issues in ways that can offer inspiration to improve evaluation processes in ML. Our analysis underscores the critical need for development teams to deliberately assess and manage ethical complexities that arise during the evaluation of ML systems, and for the industry to move towards designing institutional policies to support ethical evaluations.
Abstract:The high level of photorealism in state-of-the-art diffusion models like Midjourney, Stable Diffusion, and Firefly makes it difficult for untrained humans to distinguish between real photographs and AI-generated images. To address this problem, we designed a guide to help readers develop a more critical eye toward identifying artifacts, inconsistencies, and implausibilities that often appear in AI-generated images. The guide is organized into five categories of artifacts and implausibilities: anatomical, stylistic, functional, violations of physics, and sociocultural. For this guide, we generated 138 images with diffusion models, curated 9 images from social media, and curated 42 real photographs. These images showcase the kinds of cues that prompt suspicion towards the possibility an image is AI-generated and why it is often difficult to draw conclusions about an image's provenance without any context beyond the pixels in an image. Human-perceptible artifacts are not always present in AI-generated images, but this guide reveals artifacts and implausibilities that often emerge. By drawing attention to these kinds of artifacts and implausibilities, we aim to better equip people to distinguish AI-generated images from real photographs in the future.
Abstract:As deep neural networks are more commonly deployed in high-stakes domains, their lack of interpretability makes uncertainty quantification challenging. We investigate the effects of presenting conformal prediction sets$\unicode{x2013}$a method for generating valid confidence sets in distribution-free uncertainty quantification$\unicode{x2013}$to express uncertainty in AI-advised decision-making. Through a large online experiment, we compare the utility of conformal prediction sets to displays of Top-$1$ and Top-$k$ predictions for AI-advised image labeling. We find that the utility of prediction sets for accuracy varies with the difficulty of the task: while they result in accuracy on par with or less than Top-$1$ and Top-$k$ displays for easy images, prediction sets excel at assisting humans in labeling out-of-distribution (OOD) images especially when the set size is small. Our results empirically pinpoint the practical challenges of conformal prediction sets and provide implications on how to incorporate them for real-world decision-making.
Abstract:Humans frequently make decisions with the aid of artificially intelligent (AI) systems. A common pattern is for the AI to recommend an action to the human who retains control over the final decision. Researchers have identified ensuring that a human has appropriate reliance on an AI as a critical component of achieving complementary performance. We argue that the current definition of appropriate reliance used in such research lacks formal statistical grounding and can lead to contradictions. We propose a formal definition of reliance, based on statistical decision theory, which separates the concepts of reliance as the probability the decision-maker follows the AI's prediction from challenges a human may face in differentiating the signals and forming accurate beliefs about the situation. Our definition gives rise to a framework that can be used to guide the design and interpretation of studies on human-AI complementarity and reliance. Using recent AI-advised decision making studies from literature, we demonstrate how our framework can be used to separate the loss due to mis-reliance from the loss due to not accurately differentiating the signals. We evaluate these losses by comparing to a baseline and a benchmark for complementary performance defined by the expected payoff achieved by a rational agent facing the same decision task as the behavioral agents.
Abstract:Decision-making with information displays is a key focus of research in areas like explainable AI, human-AI teaming, and data visualization. However, what constitutes a decision problem, and what is required for an experiment to be capable of concluding that human decisions are flawed in some way, remain open to speculation. We present a widely applicable definition of a decision problem synthesized from statistical decision theory and information economics. We argue that to attribute loss in human performance to forms of bias, an experiment must provide participants with the information that a rational agent would need to identify the normative decision. We evaluate the extent to which recent evaluations of decision-making from the literature on AI-assisted decisions achieve this criteria. We find that only 6 (17\%) of 35 studies that claim to identify biased behavior present participants with sufficient information to characterize their behavior as deviating from good decision-making. We motivate the value of studying well-defined decision problems by describing a characterization of performance losses they allow us to conceive. In contrast, the ambiguities of a poorly communicated decision problem preclude normative interpretation. We conclude with recommendations for practice.
Abstract:Amid rising concerns of reproducibility and generalizability in predictive modeling, we explore the possibility and potential benefits of introducing pre-registration to the field. Despite notable advancements in predictive modeling, spanning core machine learning tasks to various scientific applications, challenges such as overlooked contextual factors, data-dependent decision-making, and unintentional re-use of test data have raised questions about the integrity of results. To address these issues, we propose adapting pre-registration practices from explanatory modeling to predictive modeling. We discuss current best practices in predictive modeling and their limitations, introduce a lightweight pre-registration template, and present a qualitative study with machine learning researchers to gain insight into the effectiveness of pre-registration in preventing biased estimates and promoting more reliable research outcomes. We conclude by exploring the scope of problems that pre-registration can address in predictive modeling and acknowledging its limitations within this context.