Abstract:The high level of photorealism in state-of-the-art diffusion models like Midjourney, Stable Diffusion, and Firefly makes it difficult for untrained humans to distinguish between real photographs and AI-generated images. To address this problem, we designed a guide to help readers develop a more critical eye toward identifying artifacts, inconsistencies, and implausibilities that often appear in AI-generated images. The guide is organized into five categories of artifacts and implausibilities: anatomical, stylistic, functional, violations of physics, and sociocultural. For this guide, we generated 138 images with diffusion models, curated 9 images from social media, and curated 42 real photographs. These images showcase the kinds of cues that prompt suspicion towards the possibility an image is AI-generated and why it is often difficult to draw conclusions about an image's provenance without any context beyond the pixels in an image. Human-perceptible artifacts are not always present in AI-generated images, but this guide reveals artifacts and implausibilities that often emerge. By drawing attention to these kinds of artifacts and implausibilities, we aim to better equip people to distinguish AI-generated images from real photographs in the future.
Abstract:As deep neural networks are more commonly deployed in high-stakes domains, their lack of interpretability makes uncertainty quantification challenging. We investigate the effects of presenting conformal prediction sets$\unicode{x2013}$a method for generating valid confidence sets in distribution-free uncertainty quantification$\unicode{x2013}$to express uncertainty in AI-advised decision-making. Through a large online experiment, we compare the utility of conformal prediction sets to displays of Top-$1$ and Top-$k$ predictions for AI-advised image labeling. We find that the utility of prediction sets for accuracy varies with the difficulty of the task: while they result in accuracy on par with or less than Top-$1$ and Top-$k$ displays for easy images, prediction sets excel at assisting humans in labeling out-of-distribution (OOD) images especially when the set size is small. Our results empirically pinpoint the practical challenges of conformal prediction sets and provide implications on how to incorporate them for real-world decision-making.