Abstract:Episodic memory plays a crucial role in various cognitive processes, such as the ability to mentally recall past events. While cognitive science emphasizes the significance of spatial context in the formation and retrieval of episodic memory, the current primary approach to implementing episodic memory in AI systems is through transformers that store temporally ordered experiences, which overlooks the spatial dimension. As a result, it is unclear how the underlying structure could be extended to incorporate the spatial axis beyond temporal order alone and thereby what benefits can be obtained. To address this, this paper explores the use of Spatially-Aware Transformer models that incorporate spatial information. These models enable the creation of place-centric episodic memory that considers both temporal and spatial dimensions. Adopting this approach, we demonstrate that memory utilization efficiency can be improved, leading to enhanced accuracy in various place-centric downstream tasks. Additionally, we propose the Adaptive Memory Allocator, a memory management method based on reinforcement learning that aims to optimize efficiency of memory utilization. Our experiments demonstrate the advantages of our proposed model in various environments and across multiple downstream tasks, including prediction, generation, reasoning, and reinforcement learning. The source code for our models and experiments will be available at https://github.com/junmokane/spatially-aware-transformer.
Abstract:Model-based reinforcement learning (MBRL) has been a primary approach to ameliorating the sample efficiency issue as well as to make a generalist agent. However, there has not been much effort toward enhancing the strategy of dreaming itself. Therefore, it is a question whether and how an agent can "dream better" in a more structured and strategic way. In this paper, inspired by the observation from cognitive science suggesting that humans use a spatial divide-and-conquer strategy in planning, we propose a new MBRL agent, called Dr. Strategy, which is equipped with a novel Dreaming Strategy. The proposed agent realizes a version of divide-and-conquer-like strategy in dreaming. This is achieved by learning a set of latent landmarks and then utilizing these to learn a landmark-conditioned highway policy. With the highway policy, the agent can first learn in the dream to move to a landmark, and from there it tackles the exploration and achievement task in a more focused way. In experiments, we show that the proposed model outperforms prior pixel-based MBRL methods in various visually complex and partially observable navigation tasks. The source code will be available at https://github.com/ahn-ml/drstrategy
Abstract:Unsupervised object-centric representation (OCR) learning has recently drawn attention as a new paradigm of visual representation. This is because of its potential of being an effective pre-training technique for various downstream tasks in terms of sample efficiency, systematic generalization, and reasoning. Although image-based reinforcement learning (RL) is one of the most important and thus frequently mentioned such downstream tasks, the benefit in RL has surprisingly not been investigated systematically thus far. Instead, most of the evaluations have focused on rather indirect metrics such as segmentation quality and object property prediction accuracy. In this paper, we investigate the effectiveness of OCR pre-training for image-based reinforcement learning via empirical experiments. For systematic evaluation, we introduce a simple object-centric visual RL benchmark and conduct experiments to answer questions such as ``Does OCR pre-training improve performance on object-centric tasks?'' and ``Can OCR pre-training help with out-of-distribution generalization?''. Our results provide empirical evidence for valuable insights into the effectiveness of OCR pre-training for RL and the potential limitations of its use in certain scenarios. Additionally, this study also examines the critical aspects of incorporating OCR pre-training in RL, including performance in a visually complex environment and the appropriate pooling layer to aggregate the object representations.
Abstract:The Dreamer agent provides various benefits of Model-Based Reinforcement Learning (MBRL) such as sample efficiency, reusable knowledge, and safe planning. However, its world model and policy networks inherit the limitations of recurrent neural networks and thus an important question is how an MBRL framework can benefit from the recent advances of transformers and what the challenges are in doing so. In this paper, we propose a transformer-based MBRL agent, called TransDreamer. We first introduce the Transformer State-Space Model, a world model that leverages a transformer for dynamics predictions. We then share this world model with a transformer-based policy network and obtain stability in training a transformer-based RL agent. In experiments, we apply the proposed model to 2D visual RL and 3D first-person visual RL tasks both requiring long-range memory access for memory-based reasoning. We show that the proposed model outperforms Dreamer in these complex tasks.
Abstract:Transformers have been successful for many natural language processing tasks. However, applying transformers to the video domain for tasks such as long-term video generation and scene understanding has remained elusive due to the high computational complexity and the lack of natural tokenization. In this paper, we propose the Object-Centric Video Transformer (OCVT) which utilizes an object-centric approach for decomposing scenes into tokens suitable for use in a generative video transformer. By factoring the video into objects, our fully unsupervised model is able to learn complex spatio-temporal dynamics of multiple interacting objects in a scene and generate future frames of the video. Our model is also significantly more memory-efficient than pixel-based models and thus able to train on videos of length up to 70 frames with a single 48GB GPU. We compare our model with previous RNN-based approaches as well as other possible video transformer baselines. We demonstrate OCVT performs well when compared to baselines in generating future frames. OCVT also develops useful representations for video reasoning, achieving start-of-the-art performance on the CATER task.
Abstract:When tasks change over time, meta-transfer learning seeks to improve the efficiency of learning a new task via both meta-learning and transfer-learning. While the standard attention has been effective in a variety of settings, we question its effectiveness in improving meta-transfer learning since the tasks being learned are dynamic and the amount of context can be substantially smaller. In this paper, using a recently proposed meta-transfer learning model, Sequential Neural Processes (SNP), we first empirically show that it suffers from a similar underfitting problem observed in the functions inferred by Neural Processes. However, we further demonstrate that unlike the meta-learning setting, the standard attention mechanisms are not effective in meta-transfer setting. To resolve, we propose a new attention mechanism, Recurrent Memory Reconstruction (RMR), and demonstrate that providing an imaginary context that is recurrently updated and reconstructed with interaction is crucial in achieving effective attention for meta-transfer learning. Furthermore, incorporating RMR into SNP, we propose Attentive Sequential Neural Processes-RMR (ASNP-RMR) and demonstrate in various tasks that ASNP-RMR significantly outperforms the baselines.
Abstract:Neural processes combine the strengths of neural networks and Gaussian processes to achieve both flexible learning and fast prediction of stochastic processes. However, neural processes do not consider the temporal dependency structure of underlying processes and thus are limited in modeling a large class of problems with temporal structure. In this paper, we propose Sequential Neural Processes (SNP). By incorporating temporal state-transition model into neural processes, the proposed model extends the potential of neural processes to modeling dynamic stochastic processes. In applying SNP to dynamic 3D scene modeling, we also introduce the Temporal Generative Query Networks. To our knowledge, this is the first 4D model that can deal with temporal dynamics of 3D scenes. In experiments, we evaluate the proposed methods in dynamic (non-stationary) regression and 4D scene inference and rendering.
Abstract:Most deep learning approaches for text-to-SQL generation are limited to the WikiSQL dataset, which only supports very simple queries. Recently, template-based and sequence-to-sequence approaches were proposed to support complex queries, which contain join queries, nested queries, and other types. However, Finegan-Dollak et al. (2018) demonstrated that both the approaches lack the ability to generate SQL of unseen templates. In this paper, we propose a template-based one-shot learning model for the text-to-SQL generation so that the model can generate SQL of an untrained template based on a single example. First, we classify the SQL template using the Matching Network that is augmented by our novel architecture Candidate Search Network. Then, we fill the variable slots in the predicted template using the Pointer Network. We show that our model outperforms state-of-the-art approaches for various text-to-SQL datasets in two aspects: 1) the SQL generation accuracy for the trained templates, and 2) the adaptability to the unseen SQL templates based on a single example without any additional training.
Abstract:Learning to infer Bayesian posterior from a few-shot dataset is an important step towards robust meta-learning due to the model uncertainty inherent in the problem. In this paper, we propose a novel Bayesian model-agnostic meta-learning method. The proposed method combines scalable gradient-based meta-learning with nonparametric variational inference in a principled probabilistic framework. During fast adaptation, the method is capable of learning complex uncertainty structure beyond a point estimate or a simple Gaussian approximation. In addition, a robust Bayesian meta-update mechanism with a new meta-loss prevents overfitting during meta-update. Remaining an efficient gradient-based meta-learner, the method is also model-agnostic and simple to implement. Experiment results show the accuracy and robustness of the proposed method in various tasks: sinusoidal regression, image classification, active learning, and reinforcement learning.
Abstract:With a new era of cloud and big data, Database Management Systems (DBMSs) have become more crucial in numerous enterprise business applications in all the industries. Accordingly, the importance of their proactive and preventive maintenance has also increased. However, detecting problems by predefined rules or stochastic modeling has limitations, particularly when analyzing the data on high-dimensional Key Performance Indicators (KPIs) from a DBMS. In recent years, Deep Learning (DL) has opened new opportunities for this complex analysis. In this paper, we present two complementary DL approaches to detect anomalies in SAP HANA. A temporal learning approach is used to detect abnormal patterns based on unlabeled historical data, whereas a spatial learning approach is used to classify known anomalies based on labeled data. We implement a system in SAP HANA integrated with Google TensorFlow. The experimental results with real-world data confirm the effectiveness of the system and models.