Abstract:Chaining functions for longer workloads is a key use case for FaaS platforms in data applications. However, modern data pipelines differ significantly from typical serverless use cases (e.g., webhooks and microservices); this makes it difficult to retrofit existing pipeline frameworks due to structural constraints. In this paper, we describe these limitations in detail and introduce bauplan, a novel FaaS programming model and serverless runtime designed for data practitioners. bauplan enables users to declaratively define functional Directed Acyclic Graphs (DAGs) along with their runtime environments, which are then efficiently executed on cloud-based workers. We show that bauplan achieves both better performance and a superior developer experience for data workloads by making the trade-off of reducing generality in favor of data-awareness
Abstract:As the Lakehouse architecture becomes more widespread, ensuring the reproducibility of data workloads over data lakes emerges as a crucial concern for data engineers. However, achieving reproducibility remains challenging. The size of data pipelines contributes to slow testing and iterations, while the intertwining of business logic and data management complicates debugging and increases error susceptibility. In this paper, we highlight recent advancements made at Bauplan in addressing this challenge. We introduce a system designed to decouple compute from data management, by leveraging a cloud runtime alongside Nessie, an open-source catalog with Git semantics. Demonstrating the system's capabilities, we showcase its ability to offer time-travel and branching semantics on top of object storage, and offer full pipeline reproducibility with a few CLI commands.
Abstract:Negotiation is the basis of social interactions; humans negotiate everything from the price of cars to how to share common resources. With rapidly growing interest in using large language models (LLMs) to act as agents on behalf of human users, such LLM agents would also need to be able to negotiate. In this paper, we study how well LLMs can negotiate with each other. We develop NegotiationArena: a flexible framework for evaluating and probing the negotiation abilities of LLM agents. We implemented three types of scenarios in NegotiationArena to assess LLM's behaviors in allocating shared resources (ultimatum games), aggregate resources (trading games) and buy/sell goods (price negotiations). Each scenario allows for multiple turns of flexible dialogues between LLM agents to allow for more complex negotiations. Interestingly, LLM agents can significantly boost their negotiation outcomes by employing certain behavioral tactics. For example, by pretending to be desolate and desperate, LLMs can improve their payoffs by 20\% when negotiating against the standard GPT-4. We also quantify irrational negotiation behaviors exhibited by the LLM agents, many of which also appear in humans. Together, \NegotiationArena offers a new environment to investigate LLM interactions, enabling new insights into LLM's theory of mind, irrationality, and reasoning abilities.
Abstract:As ecommerce continues growing, huge investments in ML and NLP for Information Retrieval are following. While the vector space model dominated retrieval modelling in product search - even as vectorization itself greatly changed with the advent of deep learning -, our position paper argues in a contrarian fashion that program synthesis provides significant advantages for many queries and a significant number of players in the market. We detail the industry significance of the proposed approach, sketch implementation details, and address common objections drawing from our experience building a similar system at Tooso.
Abstract:Recommender Systems today are still mostly evaluated in terms of accuracy, with other aspects beyond the immediate relevance of recommendations, such as diversity, long-term user retention and fairness, often taking a back seat. Moreover, reconciling multiple performance perspectives is by definition indeterminate, presenting a stumbling block to those in the pursuit of rounded evaluation of Recommender Systems. EvalRS 2022 -- a data challenge designed around Multi-Objective Evaluation -- was a first practical endeavour, providing many insights into the requirements and challenges of balancing multiple objectives in evaluation. In this work, we reflect on EvalRS 2022 and expound upon crucial learnings to formulate a first-principles approach toward Multi-Objective model selection, and outline a set of guidelines for carrying out a Multi-Objective Evaluation challenge, with potential applicability to the problem of rounded evaluation of competing models in real-world deployments.
Abstract:EvalRS aims to bring together practitioners from industry and academia to foster a debate on rounded evaluation of recommender systems, with a focus on real-world impact across a multitude of deployment scenarios. Recommender systems are often evaluated only through accuracy metrics, which fall short of fully characterizing their generalization capabilities and miss important aspects, such as fairness, bias, usefulness, informativeness. This workshop builds on the success of last year's workshop at CIKM, but with a broader scope and an interactive format.
Abstract:As Machine Learning (ML) gains adoption across industries and new use cases, practitioners increasingly realize the challenges around effectively developing and iterating on ML systems: reproducibility, debugging, scalability, and documentation are elusive goals for real-world pipelines outside tech-first companies. In this paper, we review the nature of ML-oriented workloads and argue that re-purposing existing tools won't solve the current productivity issues, as ML peculiarities warrant specialized development tooling. We then introduce Metaflow, an open-source framework for ML projects explicitly designed to boost the productivity of data practitioners by abstracting away the execution of ML code from the definition of the business logic. We show how our design addresses the main challenges in ML operations (MLOps), and document through examples, interviews and use cases its practical impact on the field.
Abstract:We examine how much of the contemporary progress in artificial intelligence (and, specifically, in natural language processing), can be, more or less directly, traced back to the seminal work and ideas of the Austrian-British philosopher Ludwig Wittgenstein, with particular focus on his late views. Discussing Wittgenstein's original theses will give us the chance to survey the state of artificial intelligence, and comment on both its strengths and weaknesses. A similar text appeared first in Spanish as a chapter of CENTENARIO DEL SILENCIO (2021), a book celebrating 100 years since the publication of the Tractatus.
Abstract:Much of the complexity of Recommender Systems (RSs) comes from the fact that they are used as part of more complex applications and affect user experience through a varied range of user interfaces. However, research focused almost exclusively on the ability of RSs to produce accurate item rankings while giving little attention to the evaluation of RS behavior in real-world scenarios. Such narrow focus has limited the capacity of RSs to have a lasting impact in the real world and makes them vulnerable to undesired behavior, such as reinforcing data biases. We propose EvalRS as a new type of challenge, in order to foster this discussion among practitioners and build in the open new methodologies for testing RSs "in the wild".
Abstract:The steady rise of online shopping goes hand in hand with the development of increasingly complex ML and NLP models. While most use cases are cast as specialized supervised learning problems, we argue that practitioners would greatly benefit from more transferable representations of products. In this work, we build on recent developments in contrastive learning to train FashionCLIP, a CLIP-like model for the fashion industry. We showcase its capabilities for retrieval, classification and grounding, and release our model and code to the community.