Abstract:The steady rise of online shopping goes hand in hand with the development of increasingly complex ML and NLP models. While most use cases are cast as specialized supervised learning problems, we argue that practitioners would greatly benefit from more transferable representations of products. In this work, we build on recent developments in contrastive learning to train FashionCLIP, a CLIP-like model for the fashion industry. We showcase its capabilities for retrieval, classification and grounding, and release our model and code to the community.
Abstract:Product discovery is a crucial component for online shopping. However, item-to-item recommendations today do not allow users to explore changes along selected dimensions: given a query item, can a model suggest something similar but in a different color? We consider item recommendations of the comparative nature (e.g. "something darker") and show how CLIP-based models can support this use case in a zero-shot manner. Leveraging a large model built for fashion, we introduce GradREC and its industry potential, and offer a first rounded assessment of its strength and weaknesses.