Abstract:Fairness studies of algorithmic decision-making systems often simplify complex decision processes, such as bail or loan approvals, into binary classification tasks. However, these approaches overlook that such decisions are not inherently binary (e.g., approve or not approve bail or loan); they also involve non-binary treatment decisions (e.g., bail conditions or loan terms) that can influence the downstream outcomes (e.g., loan repayment or reoffending). In this paper, we argue that non-binary treatment decisions are integral to the decision process and controlled by decision-makers and, therefore, should be central to fairness analyses in algorithmic decision-making. We propose a causal framework that extends fairness analyses and explicitly distinguishes between decision-subjects' covariates and the treatment decisions. This specification allows decision-makers to use our framework to (i) measure treatment disparity and its downstream effects in historical data and, using counterfactual reasoning, (ii) mitigate the impact of past unfair treatment decisions when automating decision-making. We use our framework to empirically analyze four widely used loan approval datasets to reveal potential disparity in non-binary treatment decisions and their discriminatory impact on outcomes, highlighting the need to incorporate treatment decisions in fairness assessments. Moreover, by intervening in treatment decisions, we show that our framework effectively mitigates treatment discrimination from historical data to ensure fair risk score estimation and (non-binary) decision-making processes that benefit all stakeholders.
Abstract:Causal generative models (CGMs) have recently emerged as capable approaches to simulate the causal mechanisms generating our observations, enabling causal inference. Unfortunately, existing approaches either are overly restrictive, assuming the absence of hidden confounders, or lack generality, being tailored to a particular query and graph. In this work, we introduce DeCaFlow, a CGM that accounts for hidden confounders in a single amortized training process using only observational data and the causal graph. Importantly, DeCaFlow can provably identify all causal queries with a valid adjustment set or sufficiently informative proxy variables. Remarkably, for the first time to our knowledge, we show that a confounded counterfactual query is identifiable, and thus solvable by DeCaFlow, as long as its interventional counterpart is as well. Our empirical results on diverse settings (including the Ecoli70 dataset, with 3 independent hidden confounders, tens of observed variables and hundreds of causal queries) show that DeCaFlow outperforms existing approaches, while demonstrating its out-of-the-box flexibility.
Abstract:In machine learning (ML), it is common to account for multiple objectives when, e.g., selecting a model to deploy. However, it is often unclear how one should compare, aggregate and, ultimately, trade-off these objectives, as they might be measured in different units or scales. For example, when deploying large language models (LLMs), we might not only care about their performance, but also their CO2 consumption. In this work, we investigate how objectives can be sensibly compared and aggregated to navigate their Pareto front. To do so, we propose to make incomparable objectives comparable via their CDFs, approximated by their relative rankings. This allows us to aggregate them while matching user-specific preferences, allowing practitioners to meaningfully navigate and search for models in the Pareto front. We demonstrate the potential impact of our methodology in diverse areas such as LLM selection, domain generalization, and AutoML benchmarking, where classical ways to aggregate and normalize objectives fail.
Abstract:In this paper, we focus on estimating the causal effect of an intervention over time on a dynamical system. To that end, we formally define causal interventions and their effects over time on discrete-time stochastic processes (DSPs). Then, we show under which conditions the equilibrium states of a DSP, both before and after a causal intervention, can be captured by a structural causal model (SCM). With such an equivalence at hand, we provide an explicit mapping from vector autoregressive models (VARs), broadly applied in econometrics, to linear, but potentially cyclic and/or affected by unmeasured confounders, SCMs. The resulting causal VAR framework allows us to perform causal inference over time from observational time series data. Our experiments on synthetic and real-world datasets show that the proposed framework achieves strong performance in terms of observational forecasting while enabling accurate estimation of the causal effect of interventions on dynamical systems. We demonstrate, through a case study, the potential practical questions that can be addressed using the proposed causal VAR framework.
Abstract:Graph Neural Networks (GNNs) have achieved state-of-the-art performance in solving graph classification tasks. However, most GNN architectures aggregate information from all nodes and edges in a graph, regardless of their relevance to the task at hand, thus hindering the interpretability of their predictions. In contrast to prior work, in this paper we propose a GNN \emph{training} approach that jointly i) finds the most predictive subgraph by removing edges and/or nodes -- -\emph{without making assumptions about the subgraph structure} -- while ii) optimizing the performance of the graph classification task. To that end, we rely on reinforcement learning to solve the resulting bi-level optimization with a reward function based on conformal predictions to account for the current in-training uncertainty of the classifier. Our empirical results on nine different graph classification datasets show that our method competes in performance with baselines while relying on significantly sparser subgraphs, leading to more interpretable GNN-based predictions.
Abstract:Neglecting the effect that decisions have on individuals (and thus, on the underlying data distribution) when designing algorithmic decision-making policies may increase inequalities and unfairness in the long term - even if fairness considerations were taken in the policy design process. In this paper, we propose a novel framework for achieving long-term group fairness in dynamical systems, in which current decisions may affect an individual's features in the next step, and thus, future decisions. Specifically, our framework allows us to identify a time-independent policy that converges, if deployed, to the targeted fair stationary state of the system in the long term, independently of the initial data distribution. We model the system dynamics with a time-homogeneous Markov chain and optimize the policy leveraging the Markov chain convergence theorem to ensure unique convergence. We provide examples of different targeted fair states of the system, encompassing a range of long-term goals for society and policymakers. Furthermore, we show how our approach facilitates the evaluation of different long-term targets by examining their impact on the group-conditional population distribution in the long term and how it evolves until convergence.
Abstract:In this work, we deepen on the use of normalizing flows for causal reasoning. Specifically, we first leverage recent results on non-linear ICA to show that causal models are identifiable from observational data given a causal ordering, and thus can be recovered using autoregressive normalizing flows (NFs). Second, we analyze different design and learning choices for causal normalizing flows to capture the underlying causal data-generating process. Third, we describe how to implement the do-operator in causal NFs, and thus, how to answer interventional and counterfactual questions. Finally, in our experiments, we validate our design and training choices through a comprehensive ablation study; compare causal NFs to other approaches for approximating causal models; and empirically demonstrate that causal NFs can be used to address real-world problems, where the presence of mixed discrete-continuous data and partial knowledge on the causal graph is the norm. The code for this work can be found at https://github.com/psanch21/causal-flows.
Abstract:Recent approaches build on implicit neural representations (INRs) to propose generative models over function spaces. However, they are computationally intensive when dealing with inference tasks, such as missing data imputation, or directly cannot tackle them. In this work, we propose a novel deep generative model, named VAMoH. VAMoH combines the capabilities of modeling continuous functions using INRs and the inference capabilities of Variational Autoencoders (VAEs). In addition, VAMoH relies on a normalizing flow to define the prior, and a mixture of hypernetworks to parametrize the data log-likelihood. This gives VAMoH a high expressive capability and interpretability. Through experiments on a diverse range of data types, such as images, voxels, and climate data, we show that VAMoH can effectively learn rich distributions over continuous functions. Furthermore, it can perform inference-related tasks, such as conditional super-resolution generation and in-painting, as well or better than previous approaches, while being less computationally demanding.
Abstract:Existing Graph Neural Networks (GNNs) compute the message exchange between nodes by either aggregating uniformly (convolving) the features of all the neighboring nodes, or by applying a non-uniform score (attending) to the features. Recent works have shown the strengths and weaknesses of the resulting GNN architectures, respectively, GCNs and GATs. In this work, we aim at exploiting the strengths of both approaches to their full extent. To this end, we first introduce the graph convolutional attention layer (CAT), which relies on convolutions to compute the attention scores. Unfortunately, as in the case of GCNs and GATs, we show that there exists no clear winner between the three (neither theoretically nor in practice) as their performance directly depends on the nature of the data (i.e., of the graph and features). This result brings us to the main contribution of our work, the learnable graph convolutional attention network (L-CAT): a GNN architecture that automatically interpolates between GCN, GAT and CAT in each layer, by adding only two scalar parameters. Our results demonstrate that L-CAT is able to efficiently combine different GNN layers along the network, outperforming competing methods in a wide range of datasets, and resulting in a more robust model that reduces the need of cross-validating.
Abstract:A number of variational autoencoders (VAEs) have recently emerged with the aim of modeling multimodal data, e.g., to jointly model images and their corresponding captions. Still, multimodal VAEs tend to focus solely on a subset of the modalities, e.g., by fitting the image while neglecting the caption. We refer to this limitation as modality collapse. In this work, we argue that this effect is a consequence of conflicting gradients during multimodal VAE training. We show how to detect the sub-graphs in the computational graphs where gradients conflict (impartiality blocks), as well as how to leverage existing gradient-conflict solutions from multitask learning to mitigate modality collapse. That is, to ensure impartial optimization across modalities. We apply our training framework to several multimodal VAE models, losses and datasets from the literature, and empirically show that our framework significantly improves the reconstruction performance, conditional generation, and coherence of the latent space across modalities.