Abstract:In this paper, we focus on estimating the causal effect of an intervention over time on a dynamical system. To that end, we formally define causal interventions and their effects over time on discrete-time stochastic processes (DSPs). Then, we show under which conditions the equilibrium states of a DSP, both before and after a causal intervention, can be captured by a structural causal model (SCM). With such an equivalence at hand, we provide an explicit mapping from vector autoregressive models (VARs), broadly applied in econometrics, to linear, but potentially cyclic and/or affected by unmeasured confounders, SCMs. The resulting causal VAR framework allows us to perform causal inference over time from observational time series data. Our experiments on synthetic and real-world datasets show that the proposed framework achieves strong performance in terms of observational forecasting while enabling accurate estimation of the causal effect of interventions on dynamical systems. We demonstrate, through a case study, the potential practical questions that can be addressed using the proposed causal VAR framework.
Abstract:Graph Neural Networks (GNNs) have achieved state-of-the-art performance in solving graph classification tasks. However, most GNN architectures aggregate information from all nodes and edges in a graph, regardless of their relevance to the task at hand, thus hindering the interpretability of their predictions. In contrast to prior work, in this paper we propose a GNN \emph{training} approach that jointly i) finds the most predictive subgraph by removing edges and/or nodes -- -\emph{without making assumptions about the subgraph structure} -- while ii) optimizing the performance of the graph classification task. To that end, we rely on reinforcement learning to solve the resulting bi-level optimization with a reward function based on conformal predictions to account for the current in-training uncertainty of the classifier. Our empirical results on nine different graph classification datasets show that our method competes in performance with baselines while relying on significantly sparser subgraphs, leading to more interpretable GNN-based predictions.
Abstract:Neglecting the effect that decisions have on individuals (and thus, on the underlying data distribution) when designing algorithmic decision-making policies may increase inequalities and unfairness in the long term - even if fairness considerations were taken in the policy design process. In this paper, we propose a novel framework for achieving long-term group fairness in dynamical systems, in which current decisions may affect an individual's features in the next step, and thus, future decisions. Specifically, our framework allows us to identify a time-independent policy that converges, if deployed, to the targeted fair stationary state of the system in the long term, independently of the initial data distribution. We model the system dynamics with a time-homogeneous Markov chain and optimize the policy leveraging the Markov chain convergence theorem to ensure unique convergence. We provide examples of different targeted fair states of the system, encompassing a range of long-term goals for society and policymakers. Furthermore, we show how our approach facilitates the evaluation of different long-term targets by examining their impact on the group-conditional population distribution in the long term and how it evolves until convergence.
Abstract:In this work, we deepen on the use of normalizing flows for causal reasoning. Specifically, we first leverage recent results on non-linear ICA to show that causal models are identifiable from observational data given a causal ordering, and thus can be recovered using autoregressive normalizing flows (NFs). Second, we analyze different design and learning choices for causal normalizing flows to capture the underlying causal data-generating process. Third, we describe how to implement the do-operator in causal NFs, and thus, how to answer interventional and counterfactual questions. Finally, in our experiments, we validate our design and training choices through a comprehensive ablation study; compare causal NFs to other approaches for approximating causal models; and empirically demonstrate that causal NFs can be used to address real-world problems, where the presence of mixed discrete-continuous data and partial knowledge on the causal graph is the norm. The code for this work can be found at https://github.com/psanch21/causal-flows.
Abstract:Recent approaches build on implicit neural representations (INRs) to propose generative models over function spaces. However, they are computationally intensive when dealing with inference tasks, such as missing data imputation, or directly cannot tackle them. In this work, we propose a novel deep generative model, named VAMoH. VAMoH combines the capabilities of modeling continuous functions using INRs and the inference capabilities of Variational Autoencoders (VAEs). In addition, VAMoH relies on a normalizing flow to define the prior, and a mixture of hypernetworks to parametrize the data log-likelihood. This gives VAMoH a high expressive capability and interpretability. Through experiments on a diverse range of data types, such as images, voxels, and climate data, we show that VAMoH can effectively learn rich distributions over continuous functions. Furthermore, it can perform inference-related tasks, such as conditional super-resolution generation and in-painting, as well or better than previous approaches, while being less computationally demanding.
Abstract:Existing Graph Neural Networks (GNNs) compute the message exchange between nodes by either aggregating uniformly (convolving) the features of all the neighboring nodes, or by applying a non-uniform score (attending) to the features. Recent works have shown the strengths and weaknesses of the resulting GNN architectures, respectively, GCNs and GATs. In this work, we aim at exploiting the strengths of both approaches to their full extent. To this end, we first introduce the graph convolutional attention layer (CAT), which relies on convolutions to compute the attention scores. Unfortunately, as in the case of GCNs and GATs, we show that there exists no clear winner between the three (neither theoretically nor in practice) as their performance directly depends on the nature of the data (i.e., of the graph and features). This result brings us to the main contribution of our work, the learnable graph convolutional attention network (L-CAT): a GNN architecture that automatically interpolates between GCN, GAT and CAT in each layer, by adding only two scalar parameters. Our results demonstrate that L-CAT is able to efficiently combine different GNN layers along the network, outperforming competing methods in a wide range of datasets, and resulting in a more robust model that reduces the need of cross-validating.
Abstract:A number of variational autoencoders (VAEs) have recently emerged with the aim of modeling multimodal data, e.g., to jointly model images and their corresponding captions. Still, multimodal VAEs tend to focus solely on a subset of the modalities, e.g., by fitting the image while neglecting the caption. We refer to this limitation as modality collapse. In this work, we argue that this effect is a consequence of conflicting gradients during multimodal VAE training. We show how to detect the sub-graphs in the computational graphs where gradients conflict (impartiality blocks), as well as how to leverage existing gradient-conflict solutions from multitask learning to mitigate modality collapse. That is, to ensure impartial optimization across modalities. We apply our training framework to several multimodal VAE models, losses and datasets from the literature, and empirically show that our framework significantly improves the reconstruction performance, conditional generation, and coherence of the latent space across modalities.
Abstract:Decision making algorithms, in practice, are often trained on data that exhibits a variety of biases. Decision-makers often aim to take decisions based on some ground-truth target that is assumed or expected to be unbiased, i.e., equally distributed across socially salient groups. In many practical settings, the ground-truth cannot be directly observed, and instead, we have to rely on a biased proxy measure of the ground-truth, i.e., biased labels, in the data. In addition, data is often selectively labeled, i.e., even the biased labels are only observed for a small fraction of the data that received a positive decision. To overcome label and selection biases, recent work proposes to learn stochastic, exploring decision policies via i) online training of new policies at each time-step and ii) enforcing fairness as a constraint on performance. However, the existing approach uses only labeled data, disregarding a large amount of unlabeled data, and thereby suffers from high instability and variance in the learned decision policies at different times. In this paper, we propose a novel method based on a variational autoencoder for practical fair decision-making. Our method learns an unbiased data representation leveraging both labeled and unlabeled data and uses the representations to learn a policy in an online process. Using synthetic data, we empirically validate that our method converges to the optimal (fair) policy according to the ground-truth with low variance. In real-world experiments, we further show that our training approach not only offers a more stable learning process but also yields policies with higher fairness as well as utility than previous approaches.
Abstract:In this paper, we introduce VACA, a novel class of variational graph autoencoders for causal inference in the absence of hidden confounders, when only observational data and the causal graph are available. Without making any parametric assumptions, VACA mimics the necessary properties of a Structural Causal Model (SCM) to provide a flexible and practical framework for approximating interventions (do-operator) and abduction-action-prediction steps. As a result, and as shown by our empirical results, VACA accurately approximates the interventional and counterfactual distributions on diverse SCMs. Finally, we apply VACA to evaluate counterfactual fairness in fair classification problems, as well as to learn fair classifiers without compromising performance.
Abstract:While multi-task learning (MTL) has been successfully applied in several domains, it still triggers challenges. As a consequence of negative transfer, simultaneously learning several tasks can lead to unexpectedly poor results. A key factor contributing to this undesirable behavior is the problem of conflicting gradients. In this paper, we propose a novel approach for MTL, Rotograd, which homogenizes the gradient directions across all tasks by rotating their shared representation. Our algorithm is formalized as a Stackelberg game, which allows us to provide stability guarantees. Rotograd can be transparently combined with task-weighting approaches (e.g., GradNorm) to mitigate negative transfer, resulting in a robust learning process. Thorough empirical evaluation on several architectures (e.g., ResNet) and datasets (e.g., CIFAR) verifies our theoretical results, and shows that Rotograd outperforms previous approaches. A Pytorch implementation can be found in https://github.com/adrianjav/rotograd .