Abstract:Estimating 3d human pose from monocular images is a challenging problem due to the variety and complexity of human poses and the inherent ambiguity in recovering depth from the single view. Recent deep learning based methods show promising results by using supervised learning on 3d pose annotated datasets. However, the lack of large-scale 3d annotated training data captured under in-the-wild settings makes the 3d pose estimation difficult for in-the-wild poses. Few approaches have utilized training images from both 3d and 2d pose datasets in a weakly-supervised manner for learning 3d poses in unconstrained settings. In this paper, we propose a method which can effectively predict 3d human pose from 2d pose using a deep neural network trained in a weakly-supervised manner on a combination of ground-truth 3d pose and ground-truth 2d pose. Our method uses re-projection error minimization as a constraint to predict the 3d locations of body joints, and this is crucial for training on data where the 3d ground-truth is not present. Since minimizing re-projection error alone may not guarantee an accurate 3d pose, we also use additional geometric constraints on skeleton pose to regularize the pose in 3d. We demonstrate the superior generalization ability of our method by cross-dataset validation on a challenging 3d benchmark dataset MPI-INF-3DHP containing in the wild 3d poses.
Abstract:In this paper a joint optimization technique has been proposed for coupled autoencoder which learns the autoencoder weights and coupling map (between source and target) simultaneously. The technique is applicable to any transfer learning problem. In this work, we propose a new formulation that recasts deblurring as a transfer learning problem, it is solved using the proposed coupled autoencoder. The proposed technique can operate on-the-fly, since it does not require solving any costly inverse problem. Experiments have been carried out on state-of-the-art techniques, our method yields better quality images in shorter operating times.
Abstract:This work addresses the problem of reconstructing biomedical signals from their lower dimensional projections. Traditionally Compressed Sensing (CS) based techniques have been employed for this task. These are transductive inversion processes, the problem with these approaches is that the inversion is time-consuming and hence not suitable for real-time applications. With the recent advent of deep learning, Stacked Sparse Denoising Autoencoder (SSDAE) has been used for learning inversion in an inductive setup. The training period for inductive learning is large but is very fast during application -- capable of real-time speed. This work proposes a new approach for inductive learning of the inversion process. It is based on Coupled Analysis Dictionary Learning. Results on Biomedical signal reconstruction show that our proposed approach is very fast and yields result far better than CS and SSDAE.