Abstract:The dawn of Foundation Models has on the one hand revolutionised a wide range of research problems, and, on the other hand, democratised the access and use of AI-based tools by the general public. We even observe an incursion of these models into disciplines related to human psychology, such as the Affective Computing domain, suggesting their affective, emerging capabilities. In this work, we aim to raise awareness of the power of Foundation Models in the field of Affective Computing by synthetically generating and analysing multimodal affective data, focusing on vision, linguistics, and speech (acoustics). We also discuss some fundamental problems, such as ethical issues and regulatory aspects, related to the use of Foundation Models in this research area.
Abstract:Abusive content in online social networks is a well-known problem that can cause serious psychological harm and incite hatred. The ability to upload audio data increases the importance of developing methods to detect abusive content in speech recordings. However, simply transferring the mechanisms from written abuse detection would ignore relevant information such as emotion and tone. In addition, many current algorithms require training in the specific language for which they are being used. This paper proposes to use acoustic and prosodic features to classify abusive content. We used the ADIMA data set, which contains recordings from ten Indic languages, and trained different models in multilingual and cross-lingual settings. Our results show that it is possible to classify abusive and non-abusive content using only acoustic and prosodic features. The most important and influential features are discussed.
Abstract:Foundation models (FMs) are increasingly spearheading recent advances on a variety of tasks that fall under the purview of computer audition -- the use of machines to understand sounds. They feature several advantages over traditional pipelines: among others, the ability to consolidate multiple tasks in a single model, the option to leverage knowledge from other modalities, and the readily-available interaction with human users. Naturally, these promises have created substantial excitement in the audio community, and have led to a wave of early attempts to build new, general-purpose foundation models for audio. In the present contribution, we give an overview of computational audio analysis as it transitions from traditional pipelines towards auditory foundation models. Our work highlights the key operating principles that underpin those models, and showcases how they can accommodate multiple tasks that the audio community previously tackled separately.
Abstract:The correlation between the sharpness of loss minima and generalisation in the context of deep neural networks has been subject to discussion for a long time. Whilst mostly investigated in the context of selected benchmark data sets in the area of computer vision, we explore this aspect for the audio scene classification task of the DCASE2020 challenge data. Our analysis is based on twodimensional filter-normalised visualisations and a derived sharpness measure. Our exploratory analysis shows that sharper minima tend to show better generalisation than flat minima -even more so for out-of-domain data, recorded from previously unseen devices-, thus adding to the dispute about better generalisation capabilities of flat minima. We further find that, in particular, the choice of optimisers is a main driver of the sharpness of minima and we discuss resulting limitations with respect to comparability. Our code, trained model states and loss landscape visualisations are publicly available.