Abstract:One essential goal of constructing coarse-grained molecular dynamics (CGMD) models is to accurately predict non-equilibrium processes beyond the atomistic scale. While a CG model can be constructed by projecting the full dynamics onto a set of resolved variables, the dynamics of the CG variables can recover the full dynamics only when the conditional distribution of the unresolved variables is close to the one associated with the particular projection operator. In particular, the model's applicability to various non-equilibrium processes is generally unwarranted due to the inconsistency in the conditional distribution. Here, we present a data-driven approach for constructing CGMD models that retain certain generalization ability for non-equilibrium processes. Unlike the conventional CG models based on pre-selected CG variables (e.g., the center of mass), the present CG model seeks a set of auxiliary CG variables based on the time-lagged independent component analysis to minimize the entropy contribution of the unresolved variables. This ensures the distribution of the unresolved variables under a broad range of non-equilibrium conditions approaches the one under equilibrium. Numerical results of a polymer melt system demonstrate the significance of this broadly-overlooked metric for the model's generalization ability, and the effectiveness of the present CG model for predicting the complex viscoelastic responses under various non-equilibrium flows.
Abstract:Artificial intelligence for card games has long been a popular topic in AI research. In recent years, complex card games like Mahjong and Texas Hold'em have been solved, with corresponding AI programs reaching the level of human experts. However, the game of Dou Di Zhu presents significant challenges due to its vast state/action space and unique characteristics involving reasoning about competition and cooperation, making the game extremely difficult to solve.The RL model DouZero, trained using the Deep Monte Carlo algorithm framework, has shown excellent performance in DouDiZhu. However, there are differences between its simplified game environment and the actual Dou Di Zhu environment, and its performance is still a considerable distance from that of human experts. This paper modifies the Deep Monte Carlo algorithm framework by using reinforcement learning to obtain a neural network that simultaneously estimates win rates and expectations. The action space is pruned using expectations, and strategies are generated based on win rates. This RL model is trained in a realistic DouDiZhu environment and achieves a state-of-the-art level among publicly available models.
Abstract:One essential problem in quantifying the collective behaviors of molecular systems lies in the accurate construction of free energy surfaces (FESs). The main challenges arise from the prevalence of energy barriers and the high dimensionality. Existing approaches are often based on sophisticated enhanced sampling methods to establish efficient exploration of the full-phase space. On the other hand, the collection of optimal sample points for the numerical approximation of FESs remains largely under-explored, where the discretization error could become dominant for systems with a large number of collective variables (CVs). We propose a consensus sampling-based approach by reformulating the construction as a minimax problem which simultaneously optimizes the function representation and the training set. In particular, the maximization step establishes a stochastic interacting particle system to achieve the adaptive sampling of the max-residue regime by modulating the exploitation of the Laplace approximation of the current loss function and the exploration of the uncharted phase space; the minimization step updates the FES approximation with the new training set. By iteratively solving the minimax problem, the present method essentially achieves an adversarial learning of the FESs with unified tasks for both phase space exploration and posterior error-enhanced sampling. We demonstrate the method by constructing the FESs of molecular systems with a number of CVs up to 30.
Abstract:Automating the checkout process is important in smart retail, where users effortlessly pass products by hand through a camera, triggering automatic product detection, tracking, and counting. In this emerging area, due to the lack of annotated training data, we introduce a dataset comprised of product 3D models, which allows for fast, flexible, and large-scale training data generation through graphic engine rendering. Within this context, we discern an intriguing facet, because of the user "hands-on" approach, bias in user behavior leads to distinct patterns in the real checkout process. The existence of such patterns would compromise training effectiveness if training data fail to reflect the same. To address this user bias problem, we propose a training data optimization framework, i.e., training with digital twins (DtTrain). Specifically, we leverage the product 3D models and optimize their rendering viewpoint and illumination to generate "digital twins" that visually resemble representative user images. These digital twins, inherit product labels and, when augmented, form the Digital Twin training set (DT set). Because the digital twins individually mimic user bias, the resulting DT training set better reflects the characteristics of the target scenario and allows us to train more effective product detection and tracking models. In our experiment, we show that DT set outperforms training sets created by existing dataset synthesis methods in terms of counting accuracy. Moreover, by combining DT set with pseudo-labeled real checkout data, further improvement is observed. The code is available at https://github.com/yorkeyao/Automated-Retail-Checkout.
Abstract:We consider a scenario where we have access to the target domain, but cannot afford on-the-fly training data annotation, and instead would like to construct an alternative training set from a large-scale data pool such that a competitive model can be obtained. We propose a search and pruning (SnP) solution to this training data search problem, tailored to object re-identification (re-ID), an application aiming to match the same object captured by different cameras. Specifically, the search stage identifies and merges clusters of source identities which exhibit similar distributions with the target domain. The second stage, subject to a budget, then selects identities and their images from the Stage I output, to control the size of the resulting training set for efficient training. The two steps provide us with training sets 80\% smaller than the source pool while achieving a similar or even higher re-ID accuracy. These training sets are also shown to be superior to a few existing search methods such as random sampling and greedy sampling under the same budget on training data size. If we release the budget, training sets resulting from the first stage alone allow even higher re-ID accuracy. We provide interesting discussions on the specificity of our method to the re-ID problem and particularly its role in bridging the re-ID domain gap. The code is available at https://github.com/yorkeyao/SnP.
Abstract:Reconstructing 3D point clouds into triangle meshes is a key problem in computational geometry and surface reconstruction. Point cloud triangulation solves this problem by providing edge information to the input points. Since no vertex interpolation is involved, it is beneficial to preserve sharp details on the surface. Taking advantage of learning-based techniques in triangulation, existing methods enumerate the complete combinations of candidate triangles, which is both complex and inefficient. In this paper, we leverage the duality between a triangle and its circumcenter, and introduce a deep neural network that detects the circumcenters to achieve point cloud triangulation. Specifically, we introduce multiple anchor priors to divide the neighborhood space of each point. The neural network then learns to predict the presences and locations of circumcenters under the guidance of those anchors. We extract the triangles dual to the detected circumcenters to form a primitive mesh, from which an edge-manifold mesh is produced via simple post-processing. Unlike existing learning-based triangulation methods, the proposed method bypasses an exhaustive enumeration of triangle combinations and local surface parameterization. We validate the efficiency, generalization, and robustness of our method on prominent datasets of both watertight and open surfaces. The code and trained models are provided at https://github.com/Ruitao-L/CircNet.
Abstract:A long standing problem in the modeling of non-Newtonian hydrodynamics is the availability of reliable and interpretable hydrodynamic models that faithfully encode the underlying micro-scale polymer dynamics. The main complication arises from the long polymer relaxation time, the complex molecular structure, and heterogeneous interaction. DeePN$^2$, a deep learning-based non-Newtonian hydrodynamic model, has been proposed and has shown some success in systematically passing the micro-scale structural mechanics information to the macro-scale hydrodynamics for suspensions with simple polymer conformation and bond potential. The model retains a multi-scaled nature by mapping the polymer configurations into a set of symmetry-preserving macro-scale features. The extended constitutive laws for these macro-scale features can be directly learned from the kinetics of their micro-scale counterparts. In this paper, we carry out further study of DeePN$^2$ using more complex micro-structural models. We show that DeePN$^2$ can faithfully capture the broadly overlooked viscoelastic differences arising from the specific molecular structural mechanics without human intervention.
Abstract:Geometric feature learning for 3D meshes is central to computer graphics and highly important for numerous vision applications. However, deep learning currently lags in hierarchical modeling of heterogeneous 3D meshes due to the lack of required operations and/or their efficient implementations. In this paper, we propose a series of modular operations for effective geometric deep learning over heterogeneous 3D meshes. These operations include mesh convolutions, (un)pooling and efficient mesh decimation. We provide open source implementation of these operations, collectively termed \textit{Picasso}. The mesh decimation module of Picasso is GPU-accelerated, which can process a batch of meshes on-the-fly for deep learning. Our (un)pooling operations compute features for newly-created neurons across network layers of varying resolution. Our mesh convolutions include facet2vertex, vertex2facet, and facet2facet convolutions that exploit vMF mixture and Barycentric interpolation to incorporate fuzzy modelling. Leveraging the modular operations of Picasso, we contribute a novel hierarchical neural network, PicassoNet-II, to learn highly discriminative features from 3D meshes. PicassoNet-II accepts primitive geometrics and fine textures of mesh facets as input features, while processing full scene meshes. Our network achieves highly competitive performance for shape analysis and scene parsing on a variety of benchmarks. We release Picasso and PicassoNet-II on Github https://github.com/EnyaHermite/Picasso.
Abstract:We present Picasso, a CUDA-based library comprising novel modules for deep learning over complex real-world 3D meshes. Hierarchical neural architectures have proved effective in multi-scale feature extraction which signifies the need for fast mesh decimation. However, existing methods rely on CPU-based implementations to obtain multi-resolution meshes. We design GPU-accelerated mesh decimation to facilitate network resolution reduction efficiently on-the-fly. Pooling and unpooling modules are defined on the vertex clusters gathered during decimation. For feature learning over meshes, Picasso contains three types of novel convolutions namely, facet2vertex, vertex2facet, and facet2facet convolution. Hence, it treats a mesh as a geometric structure comprising vertices and facets, rather than a spatial graph with edges as previous methods do. Picasso also incorporates a fuzzy mechanism in its filters for robustness to mesh sampling (vertex density). It exploits Gaussian mixtures to define fuzzy coefficients for the facet2vertex convolution, and barycentric interpolation to define the coefficients for the remaining two convolutions. In this release, we demonstrate the effectiveness of the proposed modules with competitive segmentation results on S3DIS. The library will be made public through https://github.com/hlei-ziyan/Picasso.
Abstract:Escalator-related injuries threaten public health with the widespread use of escalators. The existing studies tend to focus on after-the-fact statistics, reflecting on the original design and use of defects to reduce the impact of escalator-related injuries, but few attention has been paid to ongoing and impending injuries. In this study, a multi-module escalator safety monitoring system based on computer vision is designed and proposed to simultaneously monitor and deal with three major injury triggers, including losing balance, not holding on to handrails and carrying large items. The escalator identification module is utilized to determine the escalator region, namely the region of interest. The passenger monitoring module is leveraged to estimate the passengers' pose to recognize unsafe behaviors on the escalator. The dangerous object detection module detects large items that may enter the escalator and raises alarms. The processing results of the above three modules are summarized in the safety assessment module as the basis for the intelligent decision of the system. The experimental results demonstrate that the proposed system has good performance and great application potential.