Abstract:The rapid discovery of new chemical compounds is essential for advancing global health and developing treatments. While generative models show promise in creating novel molecules, challenges remain in ensuring the real-world applicability of these molecules and finding such molecules efficiently. To address this, we introduce Conditional Latent Space Molecular Scaffold Optimization (CLaSMO), which combines a Conditional Variational Autoencoder (CVAE) with Latent Space Bayesian Optimization (LSBO) to modify molecules strategically while maintaining similarity to the original input. Our LSBO setting improves the sample-efficiency of our optimization, and our modification approach helps us to obtain molecules with higher chances of real-world applicability. CLaSMO explores substructures of molecules in a sample-efficient manner by performing BO in the latent space of a CVAE conditioned on the atomic environment of the molecule to be optimized. Our experiments demonstrate that CLaSMO efficiently enhances target properties with minimal substructure modifications, achieving state-of-the-art results with a smaller model and dataset compared to existing methods. We also provide an open-source web application that enables chemical experts to apply CLaSMO in a Human-in-the-Loop setting.
Abstract:In this study, we propose a machine learning method called Distributionally Robust Safe Sample Screening (DRSSS). DRSSS aims to identify unnecessary training samples, even when the distribution of the training samples changes in the future. To achieve this, we effectively combine the distributionally robust (DR) paradigm, which aims to enhance model robustness against variations in data distribution, with the safe sample screening (SSS), which identifies unnecessary training samples prior to model training. Since we need to consider an infinite number of scenarios regarding changes in the distribution, we applied SSS because it does not require model training after the change of the distribution. In this paper, we employed the covariate shift framework to represent the distribution of training samples and reformulated the DR covariate-shift problem as a weighted empirical risk minimization problem, where the weights are subject to uncertainty within a predetermined range. By extending the existing SSS technique to accommodate this weight uncertainty, the DRSSS method is capable of reliably identifying unnecessary samples under any future distribution within a specified range. We provide a theoretical guarantee for the DRSSS method and validate its performance through numerical experiments on both synthetic and real-world datasets.
Abstract:In this study, we propose a method Distributionally Robust Safe Screening (DRSS), for identifying unnecessary samples and features within a DR covariate shift setting. This method effectively combines DR learning, a paradigm aimed at enhancing model robustness against variations in data distribution, with safe screening (SS), a sparse optimization technique designed to identify irrelevant samples and features prior to model training. The core concept of the DRSS method involves reformulating the DR covariate-shift problem as a weighted empirical risk minimization problem, where the weights are subject to uncertainty within a predetermined range. By extending the SS technique to accommodate this weight uncertainty, the DRSS method is capable of reliably identifying unnecessary samples and features under any future distribution within a specified range. We provide a theoretical guarantee of the DRSS method and validate its performance through numerical experiments on both synthetic and real-world datasets.
Abstract:Predictive pattern mining is an approach used to construct prediction models when the input is represented by structured data, such as sets, graphs, and sequences. The main idea behind predictive pattern mining is to build a prediction model by considering substructures, such as subsets, subgraphs, and subsequences (referred to as patterns), present in the structured data as features of the model. The primary challenge in predictive pattern mining lies in the exponential growth of the number of patterns with the complexity of the structured data. In this study, we propose the Safe Pattern Pruning (SPP) method to address the explosion of pattern numbers in predictive pattern mining. We also discuss how it can be effectively employed throughout the entire model building process in practical data analysis. To demonstrate the effectiveness of the proposed method, we conduct numerical experiments on regression and classification problems involving sets, graphs, and sequences.
Abstract:In this study, we have developed an incremental machine learning (ML) method that efficiently obtains the optimal model when a small number of instances or features are added or removed. This problem holds practical importance in model selection, such as cross-validation (CV) and feature selection. Among the class of ML methods known as linear estimators, there exists an efficient model update framework called the low-rank update that can effectively handle changes in a small number of rows and columns within the data matrix. However, for ML methods beyond linear estimators, there is currently no comprehensive framework available to obtain knowledge about the updated solution within a specific computational complexity. In light of this, our study introduces a method called the Generalized Low-Rank Update (GLRU) which extends the low-rank update framework of linear estimators to ML methods formulated as a certain class of regularized empirical risk minimization, including commonly used methods such as SVM and logistic regression. The proposed GLRU method not only expands the range of its applicability but also provides information about the updated solutions with a computational complexity proportional to the amount of dataset changes. To demonstrate the effectiveness of the GLRU method, we conduct experiments showcasing its efficiency in performing cross-validation and feature selection compared to other baseline methods.
Abstract:Automated high-stake decision-making such as medical diagnosis requires models with high interpretability and reliability. As one of the interpretable and reliable models with good prediction ability, we consider Sparse High-order Interaction Model (SHIM) in this study. However, finding statistically significant high-order interactions is challenging due to the intrinsic high dimensionality of the combinatorial effects. Another problem in data-driven modeling is the effect of "cherry-picking" a.k.a. selection bias. Our main contribution is to extend the recently developed parametric programming approach for selective inference to high-order interaction models. Exhaustive search over the cherry tree (all possible interactions) can be daunting and impractical even for a small-sized problem. We introduced an efficient pruning strategy and demonstrated the computational efficiency and statistical power of the proposed method using both synthetic and real data.
Abstract:Given a set of sequences comprised of time-ordered events, sequential pattern mining is useful to identify frequent sub-sequences from different sequences or within the same sequence. However, in sport, these techniques cannot determine the importance of particular patterns of play to good or bad outcomes, which is often of greater interest to coaches. In this study, we apply a supervised sequential pattern mining algorithm called safe pattern pruning (SPP) to 490 labelled event sequences representing passages of play from one rugby team's matches from the 2018 Japan Top League, and then evaluate the importance of the obtained sub-sequences to points-scoring outcomes. Linebreaks, successful lineouts, regained kicks in play, repeated phase-breakdown play, and failed opposition exit plays were identified as important patterns of play for the team scoring. When sequences were labelled with points scoring outcomes for the opposition teams, opposition team linebreaks, errors made by the team, opposition team lineouts, and repeated phase-breakdown play by the opposition team were identified as important patterns of play for the opposition team scoring. By virtue of its supervised nature and pruning properties, SPP obtained a greater variety of generally more sophisticated patterns than the well-known unsupervised PrefixSpan algorithm.
Abstract:In this paper, we consider linear prediction models in the form of a sparse linear combination of rules, where a rule is an indicator function defined over a hyperrectangle in the input space. Since the number of all possible rules generated from the training dataset becomes extremely large, it has been difficult to consider all of them when fitting a sparse model. In this paper, we propose Safe Optimal Rule Fit (SORF) as an approach to resolve this problem, which is formulated as a convex optimization problem with sparse regularization. The proposed SORF method utilizes the fact that the set of all possible rules can be represented as a tree. By extending a recently popularized convex optimization technique called safe screening, we develop a novel method for pruning the tree such that pruned nodes are guaranteed to be irrelevant to the prediction model. This approach allows us to efficiently learn a prediction model constructed from an exponentially large number of all possible rules. We demonstrate the usefulness of the proposed method by numerical experiments using several benchmark datasets.
Abstract:The problem of machine learning with missing values is common in many areas. A simple approach is to first construct a dataset without missing values simply by discarding instances with missing entries or by imputing a fixed value for each missing entry, and then train a prediction model with the new dataset. A drawback of this naive approach is that the uncertainty in the missing entries is not properly incorporated in the prediction. In order to evaluate prediction uncertainty, the multiple imputation (MI) approach has been studied, but the performance of MI is sensitive to the choice of the probabilistic model of the true values in the missing entries, and the computational cost of MI is high because multiple models must be trained. In this paper, we propose an alternative approach called the Interval-based Prediction Uncertainty Bounding (IPUB) method. The IPUB method represents the uncertainties due to missing entries as intervals, and efficiently computes the lower and upper bounds of the prediction results when all possible training sets constructed by imputing arbitrary values in the intervals are considered. The IPUB method can be applied to a wide class of convex learning algorithms including penalized least-squares regression, support vector machine (SVM), and logistic regression. We demonstrate the advantages of the IPUB method by comparing it with an existing method in numerical experiment with benchmark datasets.
Abstract:We study large-scale classification problems in changing environments where a small part of the dataset is modified, and the effect of the data modification must be quickly incorporated into the classifier. When the entire dataset is large, even if the amount of the data modification is fairly small, the computational cost of re-training the classifier would be prohibitively large. In this paper, we propose a novel method for efficiently incorporating such a data modification effect into the classifier without actually re-training it. The proposed method provides bounds on the unknown optimal classifier with the cost only proportional to the size of the data modification. We demonstrate through numerical experiments that the proposed method provides sufficiently tight bounds with negligible computational costs, especially when a small part of the dataset is modified in a large-scale classification problem.