Abstract:Quantum signal processing (QSP) and quantum singular value transformation (QSVT) have provided a unified framework for understanding many quantum algorithms, including factorization, matrix inversion, and Hamiltonian simulation. As a multivariable version of QSP, multivariable quantum signal processing (M-QSP) is proposed. M-QSP interleaves signal operators corresponding to each variable with signal processing operators, which provides an efficient means to perform multivariable polynomial transformations. However, the necessary and sufficient condition for what types of polynomials can be constructed by M-QSP is unknown. In this paper, we propose a classical algorithm to determine whether a given pair of multivariable Laurent polynomials can be implemented by M-QSP, which returns True or False. As one of the most important properties of this algorithm, it returning True is the necessary and sufficient condition. The proposed classical algorithm runs in polynomial time in the number of variables and signal operators. Our algorithm also provides a constructive method to select the necessary parameters for implementing M-QSP. These findings offer valuable insights for identifying practical applications of M-QSP.
Abstract:Pedestrian action prediction is of great significance for many applications such as autonomous driving. However, state-of-the-art methods lack explainability to make trustworthy predictions. In this paper, a novel framework called MulCPred is proposed that explains its predictions based on multi-modal concepts represented by training samples. Previous concept-based methods have limitations including: 1) they cannot directly apply to multi-modal cases; 2) they lack locality to attend to details in the inputs; 3) they suffer from mode collapse. These limitations are tackled accordingly through the following approaches: 1) a linear aggregator to integrate the activation results of the concepts into predictions, which associates concepts of different modalities and provides ante-hoc explanations of the relevance between the concepts and the predictions; 2) a channel-wise recalibration module that attends to local spatiotemporal regions, which enables the concepts with locality; 3) a feature regularization loss that encourages the concepts to learn diverse patterns. MulCPred is evaluated on multiple datasets and tasks. Both qualitative and quantitative results demonstrate that MulCPred is promising in improving the explainability of pedestrian action prediction without obvious performance degradation. Furthermore, by removing unrecognizable concepts from MulCPred, the cross-dataset prediction performance is improved, indicating the feasibility of further generalizability of MulCPred.
Abstract:The study of collective animal behavior, especially in aquatic environments, presents unique challenges and opportunities for understanding movement and interaction patterns in the field of ethology, ecology, and bio-navigation. The Fish Tracking Challenge 2024 (https://ftc-2024.github.io/) introduces a multi-object tracking competition focused on the intricate behaviors of schooling sweetfish. Using the SweetFish dataset, participants are tasked with developing advanced tracking models to accurately monitor the locations of 10 sweetfishes simultaneously. This paper introduces the competition's background, objectives, the SweetFish dataset, and the appraoches of the 1st to 3rd winners and our baseline. By leveraging video data and bounding box annotations, the competition aims to foster innovation in automatic detection and tracking algorithms, addressing the complexities of aquatic animal movements. The challenge provides the importance of multi-object tracking for discovering the dynamics of collective animal behavior, with the potential to significantly advance scientific understanding in the above fields.
Abstract:Understanding human actions from videos is essential in many domains, including sports. In figure skating, technical judgments are performed by watching skaters' 3D movements, and its part of the judging procedure can be regarded as a Temporal Action Segmentation (TAS) task. TAS tasks in figure skating that automatically assign temporal semantics to video are actively researched. However, there is a lack of datasets and effective methods for TAS tasks requiring 3D pose data. In this study, we first created the FS-Jump3D dataset of complex and dynamic figure skating jumps using optical markerless motion capture. We also propose a new fine-grained figure skating jump TAS dataset annotation method with which TAS models can learn jump procedures. In the experimental results, we validated the usefulness of 3D pose features as input and the fine-grained dataset for the TAS model in figure skating. FS-Jump3D Dataset is available at https://github.com/ryota-skating/FS-Jump3D.
Abstract:Recent deep learning-based object detection approaches have led to significant progress in multi-object tracking (MOT) algorithms. The current MOT methods mainly focus on pedestrian or vehicle scenes, but basketball sports scenes are usually accompanied by three or more object occlusion problems with similar appearances and high-intensity complex motions, which we call complex multi-object occlusion (CMOO). Here, we propose an online and robust MOT approach, named Basketball-SORT, which focuses on the CMOO problems in basketball videos. To overcome the CMOO problem, instead of using the intersection-over-union-based (IoU-based) approach, we use the trajectories of neighboring frames based on the projected positions of the players. Our method designs the basketball game restriction (BGR) and reacquiring Long-Lost IDs (RLLI) based on the characteristics of basketball scenes, and we also solve the occlusion problem based on the player trajectories and appearance features. Experimental results show that our method achieves a Higher Order Tracking Accuracy (HOTA) score of 63.48$\%$ on the basketball fixed video dataset and outperforms other recent popular approaches. Overall, our approach solved the CMOO problem more effectively than recent MOT algorithms.
Abstract:In professional basketball, the accurate prediction of scoring opportunities based on strategic decision-making is crucial for space and player evaluations. However, traditional models often face challenges in accounting for the complexities of off-ball movements, which are essential for accurate predictive performance. In this study, we propose two mathematical models to predict off-ball scoring opportunities in basketball, considering both pass-to-score and dribble-to-score movements: the Ball Movement for Off-ball Scoring (BMOS) and the Ball Intercept and Movement for Off-ball Scoring (BIMOS) models. The BMOS adapts principles from the Off-Ball Scoring Opportunities (OBSO) model, originally designed for soccer, to basketball, whereas the BIMOS also incorporates the likelihood of interception during ball movements. We evaluated these models using player tracking data from 630 NBA games in the 2015-2016 regular season, demonstrating that the BIMOS outperforms the BMOS in terms of scoring prediction accuracy. Thus, our models provide valuable insights for tactical analysis and player evaluation in basketball.
Abstract:Image understanding is a foundational task in computer vision, with recent applications emerging in soccer posture analysis. However, existing publicly available datasets lack comprehensive information, notably in the form of posture sequences and 2D pose annotations. Moreover, current analysis models often rely on interpretable linear models (e.g., PCA and regression), limiting their capacity to capture non-linear spatiotemporal relationships in complex and diverse scenarios. To address these gaps, we introduce the 3D Shot Posture (3DSP) dataset in soccer broadcast videos, which represents the most extensive sports image dataset with 2D pose annotations to our knowledge. Additionally, we present the 3DSP-GRAE (Graph Recurrent AutoEncoder) model, a non-linear approach for embedding pose sequences. Furthermore, we propose AutoSoccerPose, a pipeline aimed at semi-automating 2D and 3D pose estimation and posture analysis. While achieving full automation proved challenging, we provide a foundational baseline, extending its utility beyond the scope of annotated data. We validate AutoSoccerPose on SoccerNet and 3DSP datasets, and present posture analysis results based on 3DSP. The dataset, code, and models are available at: https://github.com/calvinyeungck/3D-Shot-Posture-Dataset.
Abstract:Multi-object tracking (MOT) is a critical and challenging task in computer vision, particularly in situations involving objects with similar appearances but diverse movements, as seen in team sports. Current methods, largely reliant on object detection and appearance, often fail to track targets in such complex scenarios accurately. This limitation is further exacerbated by the lack of comprehensive and diverse datasets covering the full view of sports pitches. Addressing these issues, we introduce TeamTrack, a pioneering benchmark dataset specifically designed for MOT in sports. TeamTrack is an extensive collection of full-pitch video data from various sports, including soccer, basketball, and handball. Furthermore, we perform a comprehensive analysis and benchmarking effort to underscore TeamTrack's utility and potential impact. Our work signifies a crucial step forward, promising to elevate the precision and effectiveness of MOT in complex, dynamic settings such as team sports. The dataset, project code and competition is released at: https://atomscott.github.io/TeamTrack/.
Abstract:Machine learning has become a common approach to predicting the outcomes of soccer matches, and the body of literature in this domain has grown substantially in the past decade and a half. This chapter discusses available datasets, the types of models and features, and ways of evaluating model performance in this application domain. The aim of this chapter is to give a broad overview of the current state and potential future developments in machine learning for soccer match results prediction, as a resource for those interested in conducting future studies in the area. Our main findings are that while gradient-boosted tree models such as CatBoost, applied to soccer-specific ratings such as pi-ratings, are currently the best-performing models on datasets containing only goals as the match features, there needs to be a more thorough comparison of the performance of deep learning models and Random Forest on a range of datasets with different types of features. Furthermore, new rating systems using both player- and team-level information and incorporating additional information from, e.g., spatiotemporal tracking and event data, could be investigated further. Finally, the interpretability of match result prediction models needs to be enhanced for them to be more useful for team management.
Abstract:Recent advances in computer vision have made significant progress in tracking and pose estimation of sports players. However, there have been fewer studies on behavior prediction with pose estimation in sports, in particular, the prediction of soccer fouls is challenging because of the smaller image size of each player and of difficulty in the usage of e.g., the ball and pose information. In our research, we introduce an innovative deep learning approach for anticipating soccer fouls. This method integrates video data, bounding box positions, image details, and pose information by curating a novel soccer foul dataset. Our model utilizes a combination of convolutional and recurrent neural networks (CNNs and RNNs) to effectively merge information from these four modalities. The experimental results show that our full model outperformed the ablated models, and all of the RNN modules, bounding box position and image, and estimated pose were useful for the foul prediction. Our findings have important implications for a deeper understanding of foul play in soccer and provide a valuable reference for future research and practice in this area.