Picture for Hideaki Suzuki

Hideaki Suzuki

Division of Brain Sciences, Dept. of Medicine, Imperial College London

Automated Quality Control in Image Segmentation: Application to the UK Biobank Cardiac MR Imaging Study

Add code
Jan 27, 2019
Figure 1 for Automated Quality Control in Image Segmentation: Application to the UK Biobank Cardiac MR Imaging Study
Figure 2 for Automated Quality Control in Image Segmentation: Application to the UK Biobank Cardiac MR Imaging Study
Figure 3 for Automated Quality Control in Image Segmentation: Application to the UK Biobank Cardiac MR Imaging Study
Figure 4 for Automated Quality Control in Image Segmentation: Application to the UK Biobank Cardiac MR Imaging Study
Viaarxiv icon

A Comprehensive Approach for Learning-based Fully-Automated Inter-slice Motion Correction for Short-Axis Cine Cardiac MR Image Stacks

Add code
Oct 03, 2018
Figure 1 for A Comprehensive Approach for Learning-based Fully-Automated Inter-slice Motion Correction for Short-Axis Cine Cardiac MR Image Stacks
Figure 2 for A Comprehensive Approach for Learning-based Fully-Automated Inter-slice Motion Correction for Short-Axis Cine Cardiac MR Image Stacks
Figure 3 for A Comprehensive Approach for Learning-based Fully-Automated Inter-slice Motion Correction for Short-Axis Cine Cardiac MR Image Stacks
Figure 4 for A Comprehensive Approach for Learning-based Fully-Automated Inter-slice Motion Correction for Short-Axis Cine Cardiac MR Image Stacks
Viaarxiv icon

Learning-Based Quality Control for Cardiac MR Images

Add code
Sep 15, 2018
Figure 1 for Learning-Based Quality Control for Cardiac MR Images
Figure 2 for Learning-Based Quality Control for Cardiac MR Images
Figure 3 for Learning-Based Quality Control for Cardiac MR Images
Figure 4 for Learning-Based Quality Control for Cardiac MR Images
Viaarxiv icon

Recurrent neural networks for aortic image sequence segmentation with sparse annotations

Add code
Aug 01, 2018
Figure 1 for Recurrent neural networks for aortic image sequence segmentation with sparse annotations
Figure 2 for Recurrent neural networks for aortic image sequence segmentation with sparse annotations
Figure 3 for Recurrent neural networks for aortic image sequence segmentation with sparse annotations
Figure 4 for Recurrent neural networks for aortic image sequence segmentation with sparse annotations
Viaarxiv icon

Automated cardiovascular magnetic resonance image analysis with fully convolutional networks

Add code
May 22, 2018
Figure 1 for Automated cardiovascular magnetic resonance image analysis with fully convolutional networks
Figure 2 for Automated cardiovascular magnetic resonance image analysis with fully convolutional networks
Figure 3 for Automated cardiovascular magnetic resonance image analysis with fully convolutional networks
Figure 4 for Automated cardiovascular magnetic resonance image analysis with fully convolutional networks
Viaarxiv icon