Abstract:Event-based visual odometry is a specific branch of visual Simultaneous Localization and Mapping (SLAM) techniques, which aims at solving tracking and mapping sub-problems in parallel by exploiting the special working principles of neuromorphic (ie, event-based) cameras. Due to the motion-dependent nature of event data, explicit data association ie, feature matching under large-baseline view-point changes is hardly established, making direct methods a more rational choice. However, state-of-the-art direct methods are limited by the high computational complexity of the mapping sub-problem and the degeneracy of camera pose tracking in certain degrees of freedom (DoF) in rotation. In this paper, we resolve these issues by building an event-based stereo visual-inertial odometry system on top of our previous direct pipeline Event-based Stereo Visual Odometry. Specifically, to speed up the mapping operation, we propose an efficient strategy for sampling contour points according to the local dynamics of events. The mapping performance is also improved in terms of structure completeness and local smoothness by merging the temporal stereo and static stereo results. To circumvent the degeneracy of camera pose tracking in recovering the pitch and yaw components of general six-DoF motion, we introduce IMU measurements as motion priors via pre-integration. To this end, a compact back-end is proposed for continuously updating the IMU bias and predicting the linear velocity, enabling an accurate motion prediction for camera pose tracking. The resulting system scales well with modern high-resolution event cameras and leads to better global positioning accuracy in large-scale outdoor environments. Extensive evaluations on five publicly available datasets featuring different resolutions and scenarios justify the superior performance of the proposed system against five state-of-the-art methods.
Abstract:Event cameras are novel bio-inspired vision sensors that measure pixel-wise brightness changes asynchronously instead of images at a given frame rate. They offer promising advantages, namely a high dynamic range, low latency, and minimal motion blur. Modern computer vision algorithms often rely on artificial neural network approaches, which require image-like representations of the data and cannot fully exploit the characteristics of event data. We propose approaches to action recognition based on the Fourier Transform. The approaches are intended to recognize oscillating motion patterns commonly present in nature. In particular, we apply our approaches to a recent dataset of breeding penguins annotated for "ecstatic display", a behavior where the observed penguins flap their wings at a certain frequency. We find that our approaches are both simple and effective, producing slightly lower results than a deep neural network (DNN) while relying just on a tiny fraction of the parameters compared to the DNN (five orders of magnitude fewer parameters). They work well despite the uncontrolled, diverse data present in the dataset. We hope this work opens a new perspective on event-based processing and action recognition.
Abstract:Stereopsis has widespread appeal in robotics as it is the predominant way by which living beings perceive depth to navigate our 3D world. Event cameras are novel bio-inspired sensors that detect per-pixel brightness changes asynchronously, with very high temporal resolution and high dynamic range, enabling machine perception in high-speed motion and broad illumination conditions. The high temporal precision also benefits stereo matching, making disparity (depth) estimation a popular research area for event cameras ever since its inception. Over the last 30 years, the field has evolved rapidly, from low-latency, low-power circuit design to current deep learning (DL) approaches driven by the computer vision community. The bibliography is vast and difficult to navigate for non-experts due its highly interdisciplinary nature. Past surveys have addressed distinct aspects of this topic, in the context of applications, or focusing only on a specific class of techniques, but have overlooked stereo datasets. This survey provides a comprehensive overview, covering both instantaneous stereo and long-term methods suitable for simultaneous localization and mapping (SLAM), along with theoretical and empirical comparisons. It is the first to extensively review DL methods as well as stereo datasets, even providing practical suggestions for creating new benchmarks to advance the field. The main advantages and challenges faced by event-based stereo depth estimation are also discussed. Despite significant progress, challenges remain in achieving optimal performance in not only accuracy but also efficiency, a cornerstone of event-based computing. We identify several gaps and propose future research directions. We hope this survey inspires future research in this area, by serving as an accessible entry point for newcomers, as well as a practical guide for seasoned researchers in the community.
Abstract:We tackle the problem of mosaicing bundle adjustment (i.e., simultaneous refinement of camera orientations and scene map) for a purely rotating event camera. We formulate the problem as a regularized non-linear least squares optimization. The objective function is defined using the linearized event generation model in the camera orientations and the panoramic gradient map of the scene. We show that this BA optimization has an exploitable block-diagonal sparsity structure, so that the problem can be solved efficiently. To the best of our knowledge, this is the first work to leverage such sparsity to speed up the optimization in the context of event-based cameras, without the need to convert events into image-like representations. We evaluate our method, called EMBA, on both synthetic and real-world datasets to show its effectiveness (50% photometric error decrease), yielding results of unprecedented quality. In addition, we demonstrate EMBA using high spatial resolution event cameras, yielding delicate panoramas in the wild, even without an initial map. Project page: https://github.com/tub-rip/emba
Abstract:Enabled by large annotated datasets, tracking and segmentation of objects in videos has made remarkable progress in recent years. Despite these advancements, algorithms still struggle under degraded conditions and during fast movements. Event cameras are novel sensors with high temporal resolution and high dynamic range that offer promising advantages to address these challenges. However, annotated data for developing learning-based mask-level tracking algorithms with events is not available. To this end, we introduce: ($i$) a new task termed \emph{space-time instance segmentation}, similar to video instance segmentation, whose goal is to segment instances throughout the entire duration of the sensor input (here, the input are quasi-continuous events and optionally aligned frames); and ($ii$) \emph{\dname}, a dataset for the new task, containing aligned grayscale frames and events. It includes annotated ground-truth labels (pixel-level instance segmentation masks) of a group of up to seven freely moving and interacting mice. We also provide two reference methods, which show that leveraging event data can consistently improve tracking performance, especially when used in combination with conventional cameras. The results highlight the potential of event-aided tracking in difficult scenarios. We hope our dataset opens the field of event-based video instance segmentation and enables the development of robust tracking algorithms for challenging conditions.\url{https://github.com/tub-rip/MouseSIS}
Abstract:Visual Odometry (VO) and SLAM are fundamental components for spatial perception in mobile robots. Despite enormous progress in the field, current VO/SLAM systems are limited by their sensors' capability. Event cameras are novel visual sensors that offer advantages to overcome the limitations of standard cameras, enabling robots to expand their operating range to challenging scenarios, such as high-speed motion and high dynamic range illumination. We propose a novel event-based stereo VO system by combining two ideas: a correspondence-free mapping module that estimates depth by maximizing ray density fusion and a tracking module that estimates camera poses by maximizing edge-map alignment. We evaluate the system comprehensively on five real-world datasets, spanning a variety of camera types (manufacturers and spatial resolutions) and scenarios (driving, flying drone, hand-held, egocentric, etc). The quantitative and qualitative results demonstrate that our method outperforms the state of the art in majority of the test sequences by a margin, e.g., trajectory error reduction of 45% on RPG dataset, 61% on DSEC dataset, and 21% on TUM-VIE dataset. To benefit the community and foster research on event-based perception systems, we release the source code and results: https://github.com/tub-rip/ES-PTAM
Abstract:Vision-based perception systems are typically exposed to large orientation changes in different robot applications. In such conditions, their performance might be compromised due to the inherent complexity of processing data captured under challenging motion. Integration of mechanical stabilizers to compensate for the camera rotation is not always possible due to the robot payload constraints. This paper presents a processing-based stabilization approach to compensate the camera's rotational motion both on events and on frames (i.e., images). Assuming that the camera's attitude is available, we evaluate the benefits of stabilization in two perception applications: feature tracking and estimating the translation component of the camera's ego-motion. The validation is performed using synthetic data and sequences from well-known event-based vision datasets. The experiments unveil that stabilization can improve feature tracking and camera ego-motion estimation accuracy in 27.37% and 34.82%, respectively. Concurrently, stabilization can reduce the processing time of computing the camera's linear velocity by at least 25%. Code is available at https://github.com/tub-rip/visual_stabilization
Abstract:Recovering the camera motion and scene geometry from visual data is a fundamental problem in the field of computer vision. Its success in standard vision is attributed to the maturity of feature extraction, data association and multi-view geometry. The recent emergence of neuromorphic event-based cameras places great demands on approaches that use raw event data as input to solve this fundamental problem.Existing state-of-the-art solutions typically infer implicitly data association by iteratively reversing the event data generation process. However, the nonlinear nature of these methods limits their applicability in real-time tasks, and the constant-motion assumption leads to unstable results under agile motion. To this end, we rethink the problem formulation in a way that aligns better with the differential working principle of event cameras.We show that the event-based normal flow can be used, via the proposed geometric error term, as an alternative to the full flow in solving a family of geometric problems that involve instantaneous first-order kinematics and scene geometry. Furthermore, we develop a fast linear solver and a continuous-time nonlinear solver on top of the proposed geometric error term.Experiments on both synthetic and real data show the superiority of our linear solver in terms of accuracy and efficiency, and indicate its complementary feature as an initialization method for existing nonlinear solvers. Besides, our continuous-time non-linear solver exhibits exceptional capability in accommodating sudden variations in motion since it does not rely on the constant-motion assumption.
Abstract:Current optical flow and point-tracking methods rely heavily on synthetic datasets. Event cameras are novel vision sensors with advantages in challenging visual conditions, but state-of-the-art frame-based methods cannot be easily adapted to event data due to the limitations of current event simulators. We introduce a novel self-supervised loss combining the Contrast Maximization framework with a non-linear motion prior in the form of pixel-level trajectories and propose an efficient solution to solve the high-dimensional assignment problem between non-linear trajectories and events. Their effectiveness is demonstrated in two scenarios: In dense continuous-time motion estimation, our method improves the zero-shot performance of a synthetically trained model on the real-world dataset EVIMO2 by 29%. In optical flow estimation, our method elevates a simple UNet to achieve state-of-the-art performance among self-supervised methods on the DSEC optical flow benchmark. Our code is available at https://github.com/tub-rip/MotionPriorCMax.
Abstract:Autonomous machines must self-maintain proper functionality to ensure the safety of humans and themselves. This pertains particularly to its cameras as predominant sensors to perceive the environment and support actions. A fundamental camera problem addressed in this study is noise. Solutions often focus on denoising images a posteriori, that is, fighting symptoms rather than root causes. However, tackling root causes requires identifying the noise sources, considering the limitations of mobile platforms. This work investigates a real-time, memory-efficient and reliable noise source estimator that combines data- and physically-based models. To this end, a DNN that examines an image with camera metadata for major camera noise sources is built and trained. In addition, it quantifies unexpected factors that impact image noise or metadata. This study investigates seven different estimators on six datasets that include synthetic noise, real-world noise from two camera systems, and real field campaigns. For these, only the model with most metadata is capable to accurately and robustly quantify all individual noise contributions. This method outperforms total image noise estimators and can be plug-and-play deployed. It also serves as a basis to include more advanced noise sources, or as part of an automatic countermeasure feedback-loop to approach fully reliable machines.