Abstract:The correction of exposure-related issues is a pivotal component in enhancing the quality of images, offering substantial implications for various computer vision tasks. Historically, most methodologies have predominantly utilized spatial domain recovery, offering limited consideration to the potentialities of the frequency domain. Additionally, there has been a lack of a unified perspective towards low-light enhancement, exposure correction, and multi-exposure fusion, complicating and impeding the optimization of image processing. In response to these challenges, this paper proposes a novel methodology that leverages the frequency domain to improve and unify the handling of exposure correction tasks. Our method introduces Holistic Frequency Attention and Dynamic Frequency Feed-Forward Network, which replace conventional correlation computation in the spatial-domain. They form a foundational building block that facilitates a U-shaped Holistic Dynamic Frequency Transformer as a filter to extract global information and dynamically select important frequency bands for image restoration. Complementing this, we employ a Laplacian pyramid to decompose images into distinct frequency bands, followed by multiple restorers, each tuned to recover specific frequency-band information. The pyramid fusion allows a more detailed and nuanced image restoration process. Ultimately, our structure unifies the three tasks of low-light enhancement, exposure correction, and multi-exposure fusion, enabling comprehensive treatment of all classical exposure errors. Benchmarking on mainstream datasets for these tasks, our proposed method achieves state-of-the-art results, paving the way for more sophisticated and unified solutions in exposure correction.
Abstract:Photographs taken with less-than-ideal exposure settings often display poor visual quality. Since the correction procedures vary significantly, it is difficult for a single neural network to handle all exposure problems. Moreover, the inherent limitations of convolutions, hinder the models ability to restore faithful color or details on extremely over-/under- exposed regions. To overcome these limitations, we propose a Macro-Micro-Hierarchical transformer, which consists of a macro attention to capture long-range dependencies, a micro attention to extract local features, and a hierarchical structure for coarse-to-fine correction. In specific, the complementary macro-micro attention designs enhance locality while allowing global interactions. The hierarchical structure enables the network to correct exposure errors of different scales layer by layer. Furthermore, we propose a contrast constraint and couple it seamlessly in the loss function, where the corrected image is pulled towards the positive sample and pushed away from the dynamically generated negative samples. Thus the remaining color distortion and loss of detail can be removed. We also extend our method as an image enhancer for low-light face recognition and low-light semantic segmentation. Experiments demonstrate that our approach obtains more attractive results than state-of-the-art methods quantitatively and qualitatively.