Abstract:We present a study of LLMs' performance in generating and rating example sentences for bilingual dictionaries across languages with varying resource levels: French (high-resource), Indonesian (mid-resource), and Tetun (low-resource), with English as the target language. We evaluate the quality of LLM-generated examples against the GDEX (Good Dictionary EXample) criteria: typicality, informativeness, and intelligibility. Our findings reveal that while LLMs can generate reasonably good dictionary examples, their performance degrades significantly for lower-resourced languages. We also observe high variability in human preferences for example quality, reflected in low inter-annotator agreement rates. To address this, we demonstrate that in-context learning can successfully align LLMs with individual annotator preferences. Additionally, we explore the use of pre-trained language models for automated rating of examples, finding that sentence perplexity serves as a good proxy for typicality and intelligibility in higher-resourced languages. Our study also contributes a novel dataset of 600 ratings for LLM-generated sentence pairs, and provides insights into the potential of LLMs in reducing the cost of lexicographic work, particularly for low-resource languages.
Abstract:Linguistic fieldwork is an important component in language documentation and preservation. However, it is a long, exhaustive, and time-consuming process. This paper presents a novel model that guides a linguist during the fieldwork and accounts for the dynamics of linguist-speaker interactions. We introduce a novel framework that evaluates the efficiency of various sampling strategies for obtaining morphological data and assesses the effectiveness of state-of-the-art neural models in generalising morphological structures. Our experiments highlight two key strategies for improving the efficiency: (1) increasing the diversity of annotated data by uniform sampling among the cells of the paradigm tables, and (2) using model confidence as a guide to enhance positive interaction by providing reliable predictions during annotation.
Abstract:Historical linguists have identified multiple forms of lexical semantic change. We present a three-dimensional framework for integrating these forms and a unified computational methodology for evaluating them concurrently. The dimensions represent increases or decreases in semantic 1) sentiment, 2) breadth, and 3) intensity. These dimensions can be complemented by the evaluation of shifts in the frequency of the target words and the thematic content of its collocates. This framework enables lexical semantic change to be mapped economically and systematically and has applications in computational social science. We present an illustrative analysis of semantic shifts in mental health and mental illness in two corpora, demonstrating patterns of semantic change that illuminate contemporary concerns about pathologization, stigma, and concept creep.
Abstract:The popular subword tokenizers of current language models, such as Byte-Pair Encoding (BPE), are known not to respect morpheme boundaries, which affects the downstream performance of the models. While many improved tokenization algorithms have been proposed, their evaluation and cross-comparison is still an open problem. As a solution, we propose a combined intrinsic-extrinsic evaluation framework for subword tokenization. Intrinsic evaluation is based on our new UniMorph Labeller tool that classifies subword tokenization as either morphological or alien. Extrinsic evaluation, in turn, is performed via the Out-of-Vocabulary Generalization Challenge 1.0 benchmark, which consists of three newly specified downstream text classification tasks. Our empirical findings show that the accuracy of UniMorph Labeller is 98%, and that, in all language models studied (including ALBERT, BERT, RoBERTa, and DeBERTa), alien tokenization leads to poorer generalizations compared to morphological tokenization for semantic compositionality of word meanings.
Abstract:This study explores the use of large language models (LLMs) for translating English into Mambai, a low-resource Austronesian language spoken in Timor-Leste, with approximately 200,000 native speakers. Leveraging a novel corpus derived from a Mambai language manual and additional sentences translated by a native speaker, we examine the efficacy of few-shot LLM prompting for machine translation (MT) in this low-resource context. Our methodology involves the strategic selection of parallel sentences and dictionary entries for prompting, aiming to enhance translation accuracy, using open-source and proprietary LLMs (LlaMa 2 70b, Mixtral 8x7B, GPT-4). We find that including dictionary entries in prompts and a mix of sentences retrieved through TF-IDF and semantic embeddings significantly improves translation quality. However, our findings reveal stark disparities in translation performance across test sets, with BLEU scores reaching as high as 21.2 on materials from the language manual, in contrast to a maximum of 4.4 on a test set provided by a native speaker. These results underscore the importance of diverse and representative corpora in assessing MT for low-resource languages. Our research provides insights into few-shot LLM prompting for low-resource MT, and makes available an initial corpus for the Mambai language.
Abstract:A good translation should be faithful to the source and should respect the norms of the target language. We address a theoretical puzzle about the relationship between these objectives. On one hand, intuition and some prior work suggest that accuracy and fluency should trade off against each other, and that capturing every detail of the source can only be achieved at the cost of fluency. On the other hand, quality assessment researchers often suggest that accuracy and fluency are highly correlated and difficult for human raters to distinguish (Callison-Burch et al. 2007). We show that the tension between these views is an instance of Simpson's paradox, and that accuracy and fluency are positively correlated at the level of the corpus but trade off at the level of individual source segments. We further suggest that the relationship between accuracy and fluency is best evaluated at the segment (or sentence) level, and that the trade off between these dimensions has implications both for assessing translation quality and developing improved MT systems.
Abstract:Human translators linger on some words and phrases more than others, and predicting this variation is a step towards explaining the underlying cognitive processes. Using data from the CRITT Translation Process Research Database, we evaluate the extent to which surprisal and attentional features derived from a Neural Machine Translation (NMT) model account for reading and production times of human translators. We find that surprisal and attention are complementary predictors of translation difficulty, and that surprisal derived from a NMT model is the single most successful predictor of production duration. Our analyses draw on data from hundreds of translators operating across 13 language pairs, and represent the most comprehensive investigation of human translation difficulty to date.
Abstract:The SIGMORPHON 2022 shared task on morpheme segmentation challenged systems to decompose a word into a sequence of morphemes and covered most types of morphology: compounds, derivations, and inflections. Subtask 1, word-level morpheme segmentation, covered 5 million words in 9 languages (Czech, English, Spanish, Hungarian, French, Italian, Russian, Latin, Mongolian) and received 13 system submissions from 7 teams and the best system averaged 97.29% F1 score across all languages, ranging English (93.84%) to Latin (99.38%). Subtask 2, sentence-level morpheme segmentation, covered 18,735 sentences in 3 languages (Czech, English, Mongolian), received 10 system submissions from 3 teams, and the best systems outperformed all three state-of-the-art subword tokenization methods (BPE, ULM, Morfessor2) by 30.71% absolute. To facilitate error analysis and support any type of future studies, we released all system predictions, the evaluation script, and all gold standard datasets.
Abstract:The Universal Morphology (UniMorph) project is a collaborative effort providing broad-coverage instantiated normalized morphological inflection tables for hundreds of diverse world languages. The project comprises two major thrusts: a language-independent feature schema for rich morphological annotation and a type-level resource of annotated data in diverse languages realizing that schema. This paper presents the expansions and improvements made on several fronts over the last couple of years (since McCarthy et al. (2020)). Collaborative efforts by numerous linguists have added 67 new languages, including 30 endangered languages. We have implemented several improvements to the extraction pipeline to tackle some issues, e.g. missing gender and macron information. We have also amended the schema to use a hierarchical structure that is needed for morphological phenomena like multiple-argument agreement and case stacking, while adding some missing morphological features to make the schema more inclusive. In light of the last UniMorph release, we also augmented the database with morpheme segmentation for 16 languages. Lastly, this new release makes a push towards inclusion of derivational morphology in UniMorph by enriching the data and annotation schema with instances representing derivational processes from MorphyNet.
Abstract:While language identification is a fundamental speech and language processing task, for many languages and language families it remains a challenging task. For many low-resource and endangered languages this is in part due to resource availability: where larger datasets exist, they may be single-speaker or have different domains than desired application scenarios, demanding a need for domain and speaker-invariant language identification systems. This year's shared task on robust spoken language identification sought to investigate just this scenario: systems were to be trained on largely single-speaker speech from one domain, but evaluated on data in other domains recorded from speakers under different recording circumstances, mimicking realistic low-resource scenarios. We see that domain and speaker mismatch proves very challenging for current methods which can perform above 95% accuracy in-domain, which domain adaptation can address to some degree, but that these conditions merit further investigation to make spoken language identification accessible in many scenarios.