Abstract:Bragging is the act of uttering statements that are likely to be positively viewed by others and it is extensively employed in human communication with the aim to build a positive self-image of oneself. Social media is a natural platform for users to employ bragging in order to gain admiration, respect, attention and followers from their audiences. Yet, little is known about the scale of bragging online and its characteristics. This paper employs computational sociolinguistics methods to conduct the first large scale study of bragging behavior on Twitter (U.S.) by focusing on its overall prevalence, temporal dynamics and impact of demographic factors. Our study shows that the prevalence of bragging decreases over time within the same population of users. In addition, younger, more educated and popular users in the U.S. are more likely to brag. Finally, we conduct an extensive linguistics analysis to unveil specific bragging themes associated with different user traits.
Abstract:Effectively leveraging multimodal information from social media posts is essential to various downstream tasks such as sentiment analysis, sarcasm detection and hate speech classification. However, combining text and image information is challenging because of the idiosyncratic cross-modal semantics with hidden or complementary information present in matching image-text pairs. In this work, we aim to directly model this by proposing the use of two auxiliary losses jointly with the main task when fine-tuning any pre-trained multimodal model. Image-Text Contrastive (ITC) brings image-text representations of a post closer together and separates them from different posts, capturing underlying dependencies. Image-Text Matching (ITM) facilitates the understanding of semantic correspondence between images and text by penalizing unrelated pairs. We combine these objectives with five multimodal models, demonstrating consistent improvements across four popular social media datasets. Furthermore, through detailed analysis, we shed light on the specific scenarios and cases where each auxiliary task proves to be most effective.
Abstract:Parody is a figurative device used for mimicking entities for comedic or critical purposes. Parody is intentionally humorous and often involves sarcasm. This paper explores jointly modelling these figurative tropes with the goal of improving performance of political parody detection in tweets. To this end, we present a multi-encoder model that combines three parallel encoders to enrich parody-specific representations with humor and sarcasm information. Experiments on a publicly available data set of political parody tweets demonstrate that our approach outperforms previous state-of-the-art methods.
Abstract:Bragging is a speech act employed with the goal of constructing a favorable self-image through positive statements about oneself. It is widespread in daily communication and especially popular in social media, where users aim to build a positive image of their persona directly or indirectly. In this paper, we present the first large scale study of bragging in computational linguistics, building on previous research in linguistics and pragmatics. To facilitate this, we introduce a new publicly available data set of tweets annotated for bragging and their types. We empirically evaluate different transformer-based models injected with linguistic information in (a) binary bragging classification, i.e., if tweets contain bragging statements or not; and (b) multi-class bragging type prediction including not bragging. Our results show that our models can predict bragging with macro F1 up to 72.42 and 35.95 in the binary and multi-class classification tasks respectively. Finally, we present an extensive linguistic and error analysis of bragging prediction to guide future research on this topic.
Abstract:Physical places help shape how we perceive the experiences we have there. For the first time, we study the relationship between social media text and the type of the place from where it was posted, whether a park, restaurant, or someplace else. To facilitate this, we introduce a novel data set of $\sim$200,000 English tweets published from 2,761 different points-of-interest in the U.S., enriched with place type information. We train classifiers to predict the type of the location a tweet was sent from that reach a macro F1 of 43.67 across eight classes and uncover the linguistic markers associated with each type of place. The ability to predict semantic place information from a tweet has applications in recommendation systems, personalization services and cultural geography.
Abstract:Hashtags are often employed on social media and beyond to add metadata to a textual utterance with the goal of increasing discoverability, aiding search, or providing additional semantics. However, the semantic content of hashtags is not straightforward to infer as these represent ad-hoc conventions which frequently include multiple words joined together and can include abbreviations and unorthodox spellings. We build a dataset of 12,594 hashtags split into individual segments and propose a set of approaches for hashtag segmentation by framing it as a pairwise ranking problem between candidate segmentations. Our novel neural approaches demonstrate 24.6% error reduction in hashtag segmentation accuracy compared to the current state-of-the-art method. Finally, we demonstrate that a deeper understanding of hashtag semantics obtained through segmentation is useful for downstream applications such as sentiment analysis, for which we achieved a 2.6% increase in average recall on the SemEval 2017 sentiment analysis dataset.