Abstract:The problem of heterogeneous clients in federated learning has recently drawn a lot of attention. Spectral model sharding, i.e., partitioning the model parameters into low-rank matrices based on the singular value decomposition, has been one of the proposed solutions for more efficient on-device training in such settings. In this work, we present two sampling strategies for such sharding, obtained as solutions to specific optimization problems. The first produces unbiased estimators of the original weights, while the second aims to minimize the squared approximation error. We discuss how both of these estimators can be incorporated in the federated learning loop and practical considerations that arise during local training. Empirically, we demonstrate that both of these methods can lead to improved performance on various commonly used datasets.
Abstract:We consider multi-draft speculative sampling, where the proposal sequences are sampled independently from different draft models. At each step, a token-level draft selection scheme takes a list of valid tokens as input and produces an output token whose distribution matches that of the target model. Previous works have demonstrated that the optimal scheme (which maximizes the probability of accepting one of the input tokens) can be cast as a solution to a linear program. In this work we show that the optimal scheme can be decomposed into a two-step solution: in the first step an importance sampling (IS) type scheme is used to select one intermediate token; in the second step (single-draft) speculative sampling is applied to generate the output token. For the case of two identical draft models we further 1) establish a necessary and sufficient condition on the distributions of the target and draft models for the acceptance probability to equal one and 2) provide an explicit expression for the optimal acceptance probability. Our theoretical analysis also motives a new class of token-level selection scheme based on weighted importance sampling. Our experimental results demonstrate consistent improvements in the achievable block efficiency and token rates over baseline schemes in a number of scenarios.
Abstract:Compressed sensing combines the power of convex optimization techniques with a sparsity-inducing prior on the signal space to solve an underdetermined system of equations. For many problems, the sparsifying dictionary is not directly given, nor its existence can be assumed. Besides, the sensing matrix can change across different scenarios. Addressing these issues requires solving a sparse representation learning problem, namely dictionary learning, taking into account the epistemic uncertainty of the learned dictionaries and, finally, jointly learning sparse representations and reconstructions under varying sensing matrix conditions. We address both concerns by proposing a variant of the LISTA architecture. First, we introduce Augmented Dictionary Learning ISTA (A-DLISTA), which incorporates an augmentation module to adapt parameters to the current measurement setup. Then, we propose to learn a distribution over dictionaries via a variational approach, dubbed Variational Learning ISTA (VLISTA). VLISTA exploits A-DLISTA as the likelihood model and approximates a posterior distribution over the dictionaries as part of an unfolded LISTA-based recovery algorithm. As a result, VLISTA provides a probabilistic way to jointly learn the dictionary distribution and the reconstruction algorithm with varying sensing matrices. We provide theoretical and experimental support for our architecture and show that our model learns calibrated uncertainties.
Abstract:The proliferation of edge devices has brought Federated Learning (FL) to the forefront as a promising paradigm for decentralized and collaborative model training while preserving the privacy of clients' data. However, FL struggles with a significant performance reduction and poor convergence when confronted with Non-Independent and Identically Distributed (Non-IID) data distributions among participating clients. While previous efforts, such as client drift mitigation and advanced server-side model fusion techniques, have shown some success in addressing this challenge, they often overlook the root cause of the performance reduction - the absence of identical data accurately mirroring the global data distribution among clients. In this paper, we introduce Gen-FedSD, a novel approach that harnesses the powerful capability of state-of-the-art text-to-image foundation models to bridge the significant Non-IID performance gaps in FL. In Gen-FedSD, each client constructs textual prompts for each class label and leverages an off-the-shelf state-of-the-art pre-trained Stable Diffusion model to synthesize high-quality data samples. The generated synthetic data is tailored to each client's unique local data gaps and distribution disparities, effectively making the final augmented local data IID. Through extensive experimentation, we demonstrate that Gen-FedSD achieves state-of-the-art performance and significant communication cost savings across various datasets and Non-IID settings.
Abstract:We investigate contrastive learning in the federated setting through the lens of SimCLR and multi-view mutual information maximization. In doing so, we uncover a connection between contrastive representation learning and user verification; by adding a user verification loss to each client's local SimCLR loss we recover a lower bound to the global multi-view mutual information. To accommodate for the case of when some labelled data are available at the clients, we extend our SimCLR variant to the federated semi-supervised setting. We see that a supervised SimCLR objective can be obtained with two changes: a) the contrastive loss is computed between datapoints that share the same label and b) we require an additional auxiliary head that predicts the correct labels from either of the two views. Along with the proposed SimCLR extensions, we also study how different sources of non-i.i.d.-ness can impact the performance of federated unsupervised learning through global mutual information maximization; we find that a global objective is beneficial for some sources of non-i.i.d.-ness but can be detrimental for others. We empirically evaluate our proposed extensions in various tasks to validate our claims and furthermore demonstrate that our proposed modifications generalize to other pretraining methods.
Abstract:The COVID19 pandemic had enormous economic and societal consequences. Contact tracing is an effective way to reduce infection rates by detecting potential virus carriers early. However, this was not generally adopted in the recent pandemic, and privacy concerns are cited as the most important reason. We substantially improve the privacy guarantees of the current state of the art in decentralized contact tracing. Whereas previous work was based on statistical inference only, we augment the inference with a learned neural network and ensure that this neural augmentation satisfies differential privacy. In a simulator for COVID19, even at epsilon=1 per message, this can significantly improve the detection of potentially infected individuals and, as a result of targeted testing, reduce infection rates. This work marks an important first step in integrating deep learning into contact tracing while maintaining essential privacy guarantees.
Abstract:Jointly learning multiple tasks with a unified model can improve accuracy and data efficiency, but it faces the challenge of task interference, where optimizing one task objective may inadvertently compromise the performance of another. A solution to mitigate this issue is to allocate task-specific parameters, free from interference, on top of shared features. However, manually designing such architectures is cumbersome, as practitioners need to balance between the overall performance across all tasks and the higher computational cost induced by the newly added parameters. In this work, we propose \textit{InterroGate}, a novel multi-task learning (MTL) architecture designed to mitigate task interference while optimizing inference computational efficiency. We employ a learnable gating mechanism to automatically balance the shared and task-specific representations while preserving the performance of all tasks. Crucially, the patterns of parameter sharing and specialization dynamically learned during training, become fixed at inference, resulting in a static, optimized MTL architecture. Through extensive empirical evaluations, we demonstrate SoTA results on three MTL benchmarks using convolutional as well as transformer-based backbones on CelebA, NYUD-v2, and PASCAL-Context.
Abstract:The pandemic in 2020 and 2021 had enormous economic and societal consequences, and studies show that contact tracing algorithms can be key in the early containment of the virus. While large strides have been made towards more effective contact tracing algorithms, we argue that privacy concerns currently hold deployment back. The essence of a contact tracing algorithm constitutes the communication of a risk score. Yet, it is precisely the communication and release of this score to a user that an adversary can leverage to gauge the private health status of an individual. We pinpoint a realistic attack scenario and propose a contact tracing algorithm with differential privacy guarantees against this attack. The algorithm is tested on the two most widely used agent-based COVID19 simulators and demonstrates superior performance in a wide range of settings. Especially for realistic test scenarios and while releasing each risk score with epsilon=1 differential privacy, we achieve a two to ten-fold reduction in the infection rate of the virus. To the best of our knowledge, this presents the first contact tracing algorithm with differential privacy guarantees when revealing risk scores for COVID19.
Abstract:Well-tuned hyperparameters are crucial for obtaining good generalization behavior in neural networks. They can enforce appropriate inductive biases, regularize the model and improve performance -- especially in the presence of limited data. In this work, we propose a simple and efficient way for optimizing hyperparameters inspired by the marginal likelihood, an optimization objective that requires no validation data. Our method partitions the training data and a neural network model into $K$ data shards and parameter partitions, respectively. Each partition is associated with and optimized only on specific data shards. Combining these partitions into subnetworks allows us to define the ``out-of-training-sample" loss of a subnetwork, i.e., the loss on data shards unseen by the subnetwork, as the objective for hyperparameter optimization. We demonstrate that we can apply this objective to optimize a variety of different hyperparameters in a single training run while being significantly computationally cheaper than alternative methods aiming to optimize the marginal likelihood for neural networks. Lastly, we also focus on optimizing hyperparameters in federated learning, where retraining and cross-validation are particularly challenging.
Abstract:Federated Learning (FL) is a machine learning paradigm to distributively learn machine learning models from decentralized data that remains on-device. Despite the success of standard Federated optimization methods, such as Federated Averaging (FedAvg) in FL, the energy demands and hardware induced constraints for on-device learning have not been considered sufficiently in the literature. Specifically, an essential demand for on-device learning is to enable trained models to be quantized to various bit-widths based on the energy needs and heterogeneous hardware designs across the federation. In this work, we introduce multiple variants of federated averaging algorithm that train neural networks robust to quantization. Such networks can be quantized to various bit-widths with only limited reduction in full precision model accuracy. We perform extensive experiments on standard FL benchmarks to evaluate our proposed FedAvg variants for quantization robustness and provide a convergence analysis for our Quantization-Aware variants in FL. Our results demonstrate that integrating quantization robustness results in FL models that are significantly more robust to different bit-widths during quantized on-device inference.