Abstract:Autonomous agents trained using deep reinforcement learning (RL) often lack the ability to successfully generalise to new environments, even when they share characteristics with the environments they have encountered during training. In this work, we investigate how the sampling of individual environment instances, or levels, affects the zero-shot generalisation (ZSG) ability of RL agents. We discover that, for deep actor-critic architectures sharing their base layers, prioritising levels according to their value loss minimises the mutual information between the agent's internal representation and the set of training levels in the generated training data. This provides a novel theoretical justification for the implicit regularisation achieved by certain adaptive sampling strategies. We then turn our attention to unsupervised environment design (UED) methods, which have more control over the data generation mechanism. We find that existing UED methods can significantly shift the training distribution, which translates to low ZSG performance. To prevent both overfitting and distributional shift, we introduce in-context environment design (ICED). ICED generates levels using a variational autoencoder trained over an initial set of level parameters, reducing distributional shift, and achieves significant improvements in ZSG over adaptive level sampling strategies and UED methods.
Abstract:Transfer learning for Bayesian optimisation has generally assumed a strong similarity between optimisation tasks, with at least a subset having similar optimal inputs. This assumption can reduce computational costs, but it is violated in a wide range of optimisation problems where transfer learning may nonetheless be useful. We replace this assumption with a weaker one only requiring the shape of the optimisation landscape to be similar, and analyse the recent method Prior Learning for Bayesian Optimisation - PLeBO - in this setting. By learning priors for the hyperparameters of the Gaussian process surrogate model we can better approximate the underlying function, especially for few function evaluations. We validate the learned priors and compare to a breadth of transfer learning approaches, using synthetic data and a recent air pollution optimisation problem as benchmarks. We show that PLeBO and prior transfer find good inputs in fewer evaluations.
Abstract:When natural language phrases are combined, their meaning is often more than the sum of their parts. In the context of NLP tasks such as sentiment analysis, where the meaning of a phrase is its sentiment, that still applies. Many NLP studies on sentiment analysis, however, focus on the fact that sentiment computations are largely compositional. We, instead, set out to obtain non-compositionality ratings for phrases with respect to their sentiment. Our contributions are as follows: a) a methodology for obtaining those non-compositionality ratings, b) a resource of ratings for 259 phrases -- NonCompSST -- along with an analysis of that resource, and c) an evaluation of computational models for sentiment analysis using this new resource.
Abstract:To successfully navigate its environment, an agent must construct and maintain representations of the other agents that it encounters. Such representations are useful for many tasks, but they are not without cost. As a result, agents must make decisions regarding how much information they choose to represent about the agents in their environment. Using selective imitation as an example task, we motivate the problem of finding agent representations that optimally trade off between downstream utility and information cost, and illustrate two example approaches to resource-constrained social representation.
Abstract:A key limitation preventing the wider adoption of autonomous agents trained via deep reinforcement learning (RL) is their limited ability to generalise to new environments, even when these share similar characteristics with environments encountered during training. In this work, we investigate how a non-uniform sampling strategy of individual environment instances, or levels, affects the zero-shot generalisation (ZSG) ability of RL agents, considering two failure modes: overfitting and over-generalisation. As a first step, we measure the mutual information (MI) between the agent's internal representation and the set of training levels, which we find to be well-correlated to instance overfitting. In contrast to uniform sampling, adaptive sampling strategies prioritising levels based on their value loss are more effective at maintaining lower MI, which provides a novel theoretical justification for this class of techniques. We then turn our attention to unsupervised environment design (UED) methods, which adaptively generate new training levels and minimise MI more effectively than methods sampling from a fixed set. However, we find UED methods significantly shift the training distribution, resulting in over-generalisation and worse ZSG performance over the distribution of interest. To prevent both instance overfitting and over-generalisation, we introduce self-supervised environment design (SSED). SSED generates levels using a variational autoencoder, effectively reducing MI while minimising the shift with the distribution of interest, and leads to statistically significant improvements in ZSG over fixed-set level sampling strategies and UED methods.
Abstract:Solving program induction problems requires searching through an enormous space of possibilities. DreamCoder is an inductive program synthesis system that, whilst solving problems, learns to simplify search in an iterative wake-sleep procedure. The cost of search is amortised by training a neural search policy, reducing search breadth and effectively "compiling" useful information to compose program solutions across tasks. Additionally, a library of program components is learnt to express discovered solutions in fewer components, reducing search depth. In DreamCoder, the neural search policy has only an indirect effect on the library learnt through the program solutions it helps discover. We present an approach for library learning that directly leverages the neural search policy, effectively "decompiling" its amortised knowledge to extract relevant program components. This provides stronger amortised inference: the amortised knowledge learnt to reduce search breadth is now also used to reduce search depth. We integrate our approach with DreamCoder and demonstrate faster domain proficiency with improved generalisation on a range of domains, particularly when fewer example solutions are available.
Abstract:Bayesian optimisation is a powerful method for optimising black-box functions, popular in settings where the true function is expensive to evaluate and no gradient information is available. Bayesian optimisation can improve responses to many optimisation problems within climate change for which simulator models are unavailable or expensive to sample from. While there have been several feasibility demonstrations of Bayesian optimisation in climate-related applications, there has been no unifying review of applications and benchmarks. We provide such a review here, to encourage the use of Bayesian optimisation in important and well-suited application domains. We identify four main application domains: material discovery, wind farm layout, optimal renewable control and environmental monitoring. For each domain we identify a public benchmark or data set that is easy to use and evaluate systems against, while being representative of real-world problems. Due to the lack of a suitable benchmark for environmental monitoring, we propose LAQN-BO, based on air pollution data. Our contributions are: a) identifying a representative range of benchmarks, providing example code where necessary; b) introducing a new benchmark, LAQN-BO; and c) promoting a wider use of climate change applications among Bayesian optimisation practitioners.
Abstract:Imitation is a key component of human social behavior, and is widely used by both children and adults as a way to navigate uncertain or unfamiliar situations. But in an environment populated by multiple heterogeneous agents pursuing different goals or objectives, indiscriminate imitation is unlikely to be an effective strategy -- the imitator must instead determine who is most useful to copy. There are likely many factors that play into these judgements, depending on context and availability of information. Here we investigate the hypothesis that these decisions involve inferences about other agents' reward functions. We suggest that people preferentially imitate the behavior of others they deem to have similar reward functions to their own. We further argue that these inferences can be made on the basis of very sparse or indirect data, by leveraging an inductive bias toward positing the existence of different \textit{groups} or \textit{types} of people with similar reward functions, allowing learners to select imitation targets without direct evidence of alignment.
Abstract:Computational models are powerful tools for understanding human cognition and behavior. They let us express our theories clearly and precisely, and offer predictions that can be subtle and often counter-intuitive. However, this same richness and ability to surprise means our scientific intuitions and traditional tools are ill-suited to designing experiments to test and compare these models. To avoid these pitfalls and realize the full potential of computational modeling, we require tools to design experiments that provide clear answers about what models explain human behavior and the auxiliary assumptions those models must make. Bayesian optimal experimental design (BOED) formalizes the search for optimal experimental designs by identifying experiments that are expected to yield informative data. In this work, we provide a tutorial on leveraging recent advances in BOED and machine learning to find optimal experiments for any kind of model that we can simulate data from, and show how by-products of this procedure allow for quick and straightforward evaluation of models and their parameters against real experimental data. As a case study, we consider theories of how people balance exploration and exploitation in multi-armed bandit decision-making tasks. We validate the presented approach using simulations and a real-world experiment. As compared to experimental designs commonly used in the literature, we show that our optimal designs more efficiently determine which of a set of models best account for individual human behavior, and more efficiently characterize behavior given a preferred model. We provide code to replicate all analyses as well as tutorial notebooks and pointers to adapt the methodology to other experimental settings.
Abstract:We present a novel framework to generate causal explanations for the decisions of agents in stochastic sequential multi-agent environments. Explanations are given via natural language conversations answering a wide range of user queries and requiring associative, interventionist, or counterfactual causal reasoning. Instead of assuming any specific causal graph, our method relies on a generative model of interactions to simulate counterfactual worlds which are used to identify the salient causes behind decisions. We implement our method for motion planning for autonomous driving and test it in simulated scenarios with coupled interactions. Our method correctly identifies and ranks the relevant causes and delivers concise explanations to the users' queries.