Abstract:In-band network telemetry (INT) is essential to network management due to its real-time visibility. However, because of the rapid increase in network devices and services, it has become crucial to have targeted access to detailed network information in a dynamic network environment. This paper proposes an intelligent network telemetry system called NTP-INT to obtain more fine-grained network information on high-load switches. Specifically, NTP-INT consists of three modules: network traffic prediction module, network pruning module, and probe path planning module. Firstly, the network traffic prediction module adopts a Multi-Temporal Graph Neural Network (MTGNN) to predict future network traffic and identify high-load switches. Then, we design the network pruning algorithm to generate a subnetwork covering all high-load switches to reduce the complexity of probe path planning. Finally, the probe path planning module uses an attention-mechanism-based deep reinforcement learning (DEL) model to plan efficient probe paths in the network slice. The experimental results demonstrate that NTP-INT can acquire more precise network information on high-load switches while decreasing the control overhead by 50\%.
Abstract:Solar filaments are one of the most prominent features observed on the Sun, and their evolutions are closely related to various solar activities, such as flares and coronal mass ejections. Real-time automated identification of solar filaments is the most effective approach to managing large volumes of data. Existing models of filament identification are characterized by large parameter sizes and high computational costs, which limit their future applications in highly integrated and intelligent ground-based and space-borne observation devices. Consequently, the design of more lightweight models will facilitate the advancement of intelligent observation equipment. In this study, we introduce Flat U-Net, a novel and highly efficient ultralightweight model that incorporates simplified channel attention (SCA) and channel self-attention (CSA) convolutional blocks for the segmentation of solar filaments in full-disk H$\alpha$ images. Feature information from each network layer is fully extracted to reconstruct interchannel feature representations. Each block effectively optimizes the channel features from the previous layer, significantly reducing parameters. The network architecture presents an elegant flattening, improving its efficiency, and simplifying the overall design. Experimental validation demonstrates that a model composed of pure SCAs achieves a precision of approximately 0.93, with dice similarity coefficient (DSC) and recall rates of 0.76 and 0.64, respectively, significantly outperforming the classical U-Net. Introducing a certain number of CSA blocks improves the DSC and recall rates to 0.82 and 0.74, respectively, which demonstrates a pronounced advantage, particularly concerning model weight size and detection effectiveness. The data set, models, and code are available as open-source resources.
Abstract:This letter presents a flexible rate-splitting multiple access (RSMA) framework for near-field (NF) integrated sensing and communications (ISAC). The spatial beams configured to meet the communication rate requirements of NF users are simultaneously leveraged to sense an additional NF target. A key innovation lies in its flexibility to select a subset of users for decoding the common stream, enhancing interference management and system performance. The system is designed by minimizing the Cram\'{e}r-Rao bound (CRB) for joint distance and angle estimation through optimized power allocation, common rate allocation, and user selection. This leads to a discrete, non-convex optimization problem. Remarkably, we demonstrate that the preconfigured beams are sufficient for target sensing, eliminating the need for additional probing signals. To solve the optimization problem, an iterative algorithm is proposed combining the quadratic transform and simulated annealing. Simulation results indicate that the proposed scheme significantly outperforms conventional RSMA and space division multiple access (SDMA), reducing distance and angle estimation errors by approximately 100\% and 20\%, respectively.
Abstract:Plane instance segmentation from RGB-D data is a crucial research topic for many downstream tasks. However, most existing deep-learning-based methods utilize only information within the RGB bands, neglecting the important role of the depth band in plane instance segmentation. Based on EfficientSAM, a fast version of SAM, we propose a plane instance segmentation network called PlaneSAM, which can fully integrate the information of the RGB bands (spectral bands) and the D band (geometric band), thereby improving the effectiveness of plane instance segmentation in a multimodal manner. Specifically, we use a dual-complexity backbone, with primarily the simpler branch learning D-band features and primarily the more complex branch learning RGB-band features. Consequently, the backbone can effectively learn D-band feature representations even when D-band training data is limited in scale, retain the powerful RGB-band feature representations of EfficientSAM, and allow the original backbone branch to be fine-tuned for the current task. To enhance the adaptability of our PlaneSAM to the RGB-D domain, we pretrain our dual-complexity backbone using the segment anything task on large-scale RGB-D data through a self-supervised pretraining strategy based on imperfect pseudo-labels. To support the segmentation of large planes, we optimize the loss function combination ratio of EfficientSAM. In addition, Faster R-CNN is used as a plane detector, and its predicted bounding boxes are fed into our dual-complexity network as prompts, thereby enabling fully automatic plane instance segmentation. Experimental results show that the proposed PlaneSAM sets a new SOTA performance on the ScanNet dataset, and outperforms previous SOTA approaches in zero-shot transfer on the 2D-3D-S, Matterport3D, and ICL-NUIM RGB-D datasets, while only incurring a 10% increase in computational overhead compared to EfficientSAM.
Abstract:Inverse materials design has proven successful in accelerating novel material discovery. Many inverse materials design methods use unsupervised learning where a latent space is learned to offer a compact description of materials representations. A latent space learned this way is likely to be entangled, in terms of the target property and other properties of the materials. This makes the inverse design process ambiguous. Here, we present a semi-supervised learning approach based on a disentangled variational autoencoder to learn a probabilistic relationship between features, latent variables and target properties. This approach is data efficient because it combines all labelled and unlabelled data in a coherent manner, and it uses expert-informed prior distributions to improve model robustness even with limited labelled data. It is in essence interpretable, as the learnable target property is disentangled out of the other properties of the materials, and an extra layer of interpretability can be provided by a post-hoc analysis of the classification head of the model. We demonstrate this new approach on an experimental high-entropy alloy dataset with chemical compositions as input and single-phase formation as the single target property. While single property is used in this work, the disentangled model can be extended to customize for inverse design of materials with multiple target properties.
Abstract:Medical education relies heavily on Simulated Patients (SPs) to provide a safe environment for students to practice clinical skills, including medical image analysis. However, the high cost of recruiting qualified SPs and the lack of diverse medical imaging datasets have presented significant challenges. To address these issues, this paper introduces MedDiT, a novel knowledge-controlled conversational framework that can dynamically generate plausible medical images aligned with simulated patient symptoms, enabling diverse diagnostic skill training. Specifically, MedDiT integrates various patient Knowledge Graphs (KGs), which describe the attributes and symptoms of patients, to dynamically prompt Large Language Models' (LLMs) behavior and control the patient characteristics, mitigating hallucination during medical conversation. Additionally, a well-tuned Diffusion Transformer (DiT) model is incorporated to generate medical images according to the specified patient attributes in the KG. In this paper, we present the capabilities of MedDiT through a practical demonstration, showcasing its ability to act in diverse simulated patient cases and generate the corresponding medical images. This can provide an abundant and interactive learning experience for students, advancing medical education by offering an immersive simulation platform for future healthcare professionals. The work sheds light on the feasibility of incorporating advanced technologies like LLM, KG, and DiT in education applications, highlighting their potential to address the challenges faced in simulated patient-based medical education.
Abstract:Simulated Patients (SPs) play a crucial role in clinical medical education by providing realistic scenarios for student practice. However, the high cost of training and hiring qualified SPs, along with the heavy workload and potential risks they face in consistently portraying actual patients, limit students' access to this type of clinical training. Consequently, the integration of computer program-based simulated patients has emerged as a valuable educational tool in recent years. With the rapid development of Large Language Models (LLMs), their exceptional capabilities in conversational artificial intelligence and role-playing have been demonstrated, making them a feasible option for implementing Virtual Simulated Patient (VSP). In this paper, we present an integrated model-agnostic framework called CureFun that harnesses the potential of LLMs in clinical medical education. This framework facilitates natural conversations between students and simulated patients, evaluates their dialogue, and provides suggestions to enhance students' clinical inquiry skills. Through comprehensive evaluations, our approach demonstrates more authentic and professional SP-scenario dialogue flows compared to other LLM-based chatbots, thus proving its proficiency in simulating patients. Additionally, leveraging CureFun's evaluation ability, we assess several medical LLMs and discuss the possibilities and limitations of using LLMs as virtual doctors from the perspective of their diagnostic abilities.
Abstract:This study explores the robustness of label noise classifiers, aiming to enhance model resilience against noisy data in complex real-world scenarios. Label noise in supervised learning, characterized by erroneous or imprecise labels, significantly impairs model performance. This research focuses on the increasingly pertinent issue of label noise's impact on practical applications. Addressing the prevalent challenge of inaccurate training data labels, we integrate adversarial machine learning (AML) and importance reweighting techniques. Our approach involves employing convolutional neural networks (CNN) as the foundational model, with an emphasis on parameter adjustment for individual training samples. This strategy is designed to heighten the model's focus on samples critically influencing performance.
Abstract:Non-negative matrix factorization (NMF) and its variants have been widely employed in clustering and classification tasks (Long, & Jian , 2021). However, noises can seriously affect the results of our experiments. Our research is dedicated to investigating the noise robustness of non-negative matrix factorization (NMF) in the face of different types of noise. Specifically, we adopt three different NMF algorithms, namely L1 NMF, L2 NMF, and L21 NMF, and use the ORL and YaleB data sets to simulate a series of experiments with salt-and-pepper noise and Block-occlusion noise separately. In the experiment, we use a variety of evaluation indicators, including root mean square error (RMSE), accuracy (ACC), and normalized mutual information (NMI), to evaluate the performance of different NMF algorithms in noisy environments. Through these indicators, we quantify the resistance of NMF algorithms to noise and gain insights into their feasibility in practical applications.
Abstract:Recently, methods for neural surface representation and rendering, for example NeuS, have shown that learning neural implicit surfaces through volume rendering is becoming increasingly popular and making good progress. However, these methods still face some challenges. Existing methods lack a direct representation of depth information, which makes object reconstruction unrestricted by geometric features, resulting in poor reconstruction of objects with texture and color features. This is because existing methods only use surface normals to represent implicit surfaces without using depth information. Therefore, these methods cannot model the detailed surface features of objects well. To address this problem, we propose a neural implicit surface learning method called Depth-NeuS based on depth information optimization for multi-view reconstruction. In this paper, we introduce depth loss to explicitly constrain SDF regression and introduce geometric consistency loss to optimize for low-texture areas. Specific experiments show that Depth-NeuS outperforms existing technologies in multiple scenarios and achieves high-quality surface reconstruction in multiple scenarios.