Abstract:End-to-end models are emerging as the mainstream in autonomous driving perception. However, the inability to meticulously deconstruct their internal mechanisms results in diminished development efficacy and impedes the establishment of trust. Pioneering in the issue, we present the Independent Functional Module Evaluation for Bird's-Eye-View Perception Model (BEV-IFME), a novel framework that juxtaposes the module's feature maps against Ground Truth within a unified semantic Representation Space to quantify their similarity, thereby assessing the training maturity of individual functional modules. The core of the framework lies in the process of feature map encoding and representation aligning, facilitated by our proposed two-stage Alignment AutoEncoder, which ensures the preservation of salient information and the consistency of feature structure. The metric for evaluating the training maturity of functional modules, Similarity Score, demonstrates a robust positive correlation with BEV metrics, with an average correlation coefficient of 0.9387, attesting to the framework's reliability for assessment purposes.
Abstract:Bird's-eye-view (BEV) semantic segmentation is becoming crucial in autonomous driving systems. It realizes ego-vehicle surrounding environment perception by projecting 2D multi-view images into 3D world space. Recently, BEV segmentation has made notable progress, attributed to better view transformation modules, larger image encoders, or more temporal information. However, there are still two issues: 1) a lack of effective understanding and enhancement of BEV space features, particularly in accurately capturing long-distance environmental features and 2) recognizing fine details of target objects. To address these issues, we propose OE-BevSeg, an end-to-end multimodal framework that enhances BEV segmentation performance through global environment-aware perception and local target object enhancement. OE-BevSeg employs an environment-aware BEV compressor. Based on prior knowledge about the main composition of the BEV surrounding environment varying with the increase of distance intervals, long-sequence global modeling is utilized to improve the model's understanding and perception of the environment. From the perspective of enriching target object information in segmentation results, we introduce the center-informed object enhancement module, using centerness information to supervise and guide the segmentation head, thereby enhancing segmentation performance from a local enhancement perspective. Additionally, we designed a multimodal fusion branch that integrates multi-view RGB image features with radar/LiDAR features, achieving significant performance improvements. Extensive experiments show that, whether in camera-only or multimodal fusion BEV segmentation tasks, our approach achieves state-of-the-art results by a large margin on the nuScenes dataset for vehicle segmentation, demonstrating superior applicability in the field of autonomous driving.
Abstract:Perception is essential for autonomous driving system. Recent approaches based on Bird's-eye-view (BEV) and deep learning have made significant progress. However, there exists challenging issues including lengthy development cycles, poor reusability, and complex sensor setups in perception algorithm development process. To tackle the above challenges, this paper proposes a novel hierarchical Bird's-eye-view (BEV) perception paradigm, aiming to provide a library of fundamental perception modules and user-friendly graphical interface, enabling swift construction of customized models. We conduct the Pretrain-Finetune strategy to effectively utilize large scale public datasets and streamline development processes. Specifically, we present a Multi-Module Learning (MML) approach, enhancing performance through synergistic and iterative training of multiple models. Extensive experimental results on the Nuscenes dataset demonstrate that our approach renders significant improvement over the traditional training method.