Abstract:Personal data includes the digital footprints that we leave behind as part of our everyday activities, both online and offline in the real world. It includes data we collect ourselves, such as from wearables, as well as the data collected by others about our online behaviour and activities. Sometimes we are able to use the personal data we ourselves collect, in order to examine some parts of our lives but for the most part, our personal data is leveraged by third parties including internet companies, for services like targeted advertising and recommendations. Lifelogging is a form of extreme personal data gathering and in this article we present an overview of the tools used to manage access to lifelogs as demonstrated at the most recent of the annual Lifelog Search Challenge benchmarking workshops. Here, experimental systems are showcased in live, real time information seeking tasks by real users. This overview of these systems' capabilities show the range of possibilities for accessing our own personal data which may, in time, become more easily available as consumer-level services.
Abstract:Recent years have witnessed an increasing amount of dialogue/conversation on the web especially on social media. That inspires the development of dialogue-based retrieval, in which retrieving videos based on dialogue is of increasing interest for recommendation systems. Different from other video retrieval tasks, dialogue-to-video retrieval uses structured queries in the form of user-generated dialogue as the search descriptor. We present a novel dialogue-to-video retrieval system, incorporating structured conversational information. Experiments conducted on the AVSD dataset show that our proposed approach using plain-text queries improves over the previous counterpart model by 15.8% on R@1. Furthermore, our approach using dialogue as a query, improves retrieval performance by 4.2%, 6.2%, 8.6% on R@1, R@5 and R@10 and outperforms the state-of-the-art model by 0.7%, 3.6% and 6.0% on R@1, R@5 and R@10 respectively.
Abstract:Many models have been proposed for vision and language tasks, especially the image-text retrieval task. All state-of-the-art (SOTA) models in this challenge contained hundreds of millions of parameters. They also were pretrained on a large external dataset that has been proven to make a big improvement in overall performance. It is not easy to propose a new model with a novel architecture and intensively train it on a massive dataset with many GPUs to surpass many SOTA models, which are already available to use on the Internet. In this paper, we proposed a compact graph-based framework, named HADA, which can combine pretrained models to produce a better result, rather than building from scratch. First, we created a graph structure in which the nodes were the features extracted from the pretrained models and the edges connecting them. The graph structure was employed to capture and fuse the information from every pretrained model with each other. Then a graph neural network was applied to update the connection between the nodes to get the representative embedding vector for an image and text. Finally, we used the cosine similarity to match images with their relevant texts and vice versa to ensure a low inference time. Our experiments showed that, although HADA contained a tiny number of trainable parameters, it could increase baseline performance by more than 3.6% in terms of evaluation metrics in the Flickr30k dataset. Additionally, the proposed model did not train on any external dataset and did not require many GPUs but only 1 to train due to its small number of parameters. The source code is available at https://github.com/m2man/HADA.
Abstract:Identifying stress levels can provide valuable data for mental health analytics as well as labels for annotation systems. Although much research has been conducted into stress detection models using heart rate variability at a higher cost of data collection, there is a lack of research on the potential of using low-resolution Electrodermal Activity (EDA) signals from consumer-grade wearable devices to identify stress patterns. In this paper, we concentrate on performing statistical analyses on the stress detection capability of two popular approaches of training stress detection models with stress-related biometric signals: user-dependent and user-independent models. Our research manages to show that user-dependent models are statistically more accurate for stress detection. In terms of effectiveness assessment, the balanced accuracy (BA) metric is employed to evaluate the capability of distinguishing stress and non-stress conditions of the models trained on either low-resolution or high-resolution Electrodermal Activity (EDA) signals. The results from the experiment show that training the model with (comparatively low-cost) low-resolution EDA signal does not affect the stress detection accuracy of the model significantly compared to using a high-resolution EDA signal. Our research results demonstrate the potential of attaching the user-dependent stress detection model trained on personal low-resolution EDA signal recorded to collect data in daily life to provide users with personal stress level insight and analysis.
Abstract:Stress is a complex issue with wide-ranging physical and psychological impacts on human daily performance. Specifically, acute stress detection is becoming a valuable application in contextual human understanding. Two common approaches to training a stress detection model are subject-dependent and subject-independent training methods. Although subject-dependent training methods have proven to be the most accurate approach to build stress detection models, subject-independent models are a more practical and cost-efficient method, as they allow for the deployment of stress level detection and management systems in consumer-grade wearable devices without requiring training data for the end-user. To improve the performance of subject-independent stress detection models, in this paper, we introduce a stress-related bio-signal processing pipeline with a simple neural network architecture using statistical features extracted from multimodal contextual sensing sources including Electrodermal Activity (EDA), Blood Volume Pulse (BVP), and Skin Temperature (ST) captured from a consumer-grade wearable device. Using our proposed model architecture, we compare the accuracy between stress detection models that use measures from each individual signal source, and one model employing the fusion of multiple sensor sources. Extensive experiments on the publicly available WESAD dataset demonstrate that our proposed model outperforms conventional methods as well as providing 1.63% higher mean accuracy score compared to the state-of-the-art model while maintaining a low standard deviation. Our experiments also show that combining features from multiple sources produce more accurate predictions than using only one sensor source individually.
Abstract:Conventional approaches to image-text retrieval mainly focus on indexing visual objects appearing in pictures but ignore the interactions between these objects. Such objects occurrences and interactions are equivalently useful and important in this field as they are usually mentioned in the text. Scene graph presentation is a suitable method for the image-text matching challenge and obtained good results due to its ability to capture the inter-relationship information. Both images and text are represented in scene graph levels and formulate the retrieval challenge as a scene graph matching challenge. In this paper, we introduce the Local and Global Scene Graph Matching (LGSGM) model that enhances the state-of-the-art method by integrating an extra graph convolution network to capture the general information of a graph. Specifically, for a pair of scene graphs of an image and its caption, two separate models are used to learn the features of each graph's nodes and edges. Then a Siamese-structure graph convolution model is employed to embed graphs into vector forms. We finally combine the graph-level and the vector-level to calculate the similarity of this image-text pair. The empirical experiments show that our enhancement with the combination of levels can improve the performance of the baseline method by increasing the recall by more than 10% on the Flickr30k dataset.
Abstract:This work adapts a deep neural model for image saliency prediction to the temporal domain of egocentric video. We compute the saliency map for each video frame, firstly with an off-the-shelf model trained from static images, secondly by adding a a convolutional or conv-LSTM layers trained with a dataset for video saliency prediction. We study each configuration on EgoMon, a new dataset made of seven egocentric videos recorded by three subjects in both free-viewing and task-driven set ups. Our results indicate that the temporal adaptation is beneficial when the viewer is not moving and observing the scene from a narrow field of view. Encouraged by this observation, we compute and publish the saliency maps for the EPIC Kitchens dataset, in which viewers are cooking. Source code and models available at https://imatge-upc.github.io/saliency-2018-videosalgan/