Abstract:Performance evaluation in multimedia retrieval, as in the information retrieval domain at large, relies heavily on retrieval experiments, employing a broad range of techniques and metrics. These can involve human-in-the-loop and machine-only settings for the retrieval process itself and the subsequent verification of results. Such experiments can be elaborate and use-case-specific, which can make them difficult to compare or replicate. In this paper, we present a formal model to express all relevant aspects of such retrieval experiments, as well as a flexible open-source evaluation infrastructure that implements the model. These contributions intend to make a step towards lowering the hurdles for conducting retrieval experiments and improving their reproducibility.
Abstract:In recent years, the DBLP computer science bibliography has been prominently used for searching scholarly information, such as publications, scholars, and venues. However, its current search service lacks the capability to handle complex queries, which limits the usability of DBLP. In this paper, we present NLQxform-UI, a web-based natural language interface that enables users to query DBLP directly with complex natural language questions. NLQxform-UI automatically translates given questions into SPARQL queries and executes the queries over the DBLP knowledge graph to retrieve answers. The querying process is presented to users in an interactive manner, which improves the transparency of the system and helps examine the returned answers. Also, intermediate results in the querying process can be previewed and manually altered to improve the accuracy of the system. NLQxform-UI has been completely open-sourced: https://github.com/ruijie-wang-uzh/NLQxform-UI.
Abstract:Most current methods for multi-hop question answering (QA) over knowledge graphs (KGs) only provide final conclusive answers without explanations, such as a set of KG entities that is difficult for normal users to review and comprehend. This issue severely limits the application of KG-based QA in real-world scenarios. However, it is non-trivial to solve due to two challenges: First, annotations of reasoning chains of multi-hop questions, which could serve as supervision for explanation generation, are usually lacking. Second, it is difficult to maintain high efficiency when explicit KG triples need to be retrieved to generate explanations. In this paper, we propose a novel Graph Neural Network-based Two-Step Reasoning model (GNN2R) to solve this issue. GNN2R can provide both final answers and reasoning subgraphs as a rationale behind final answers efficiently with only weak supervision that is available through question-final answer pairs. We extensively evaluated GNN2R with detailed analyses in experiments. The results demonstrate that, in terms of effectiveness, efficiency, and quality of generated explanations, GNN2R outperforms existing state-of-the-art methods that are applicable to this task. Our code and pre-trained models are available at https://github.com/ruijie-wang-uzh/GNN2R.
Abstract:In recent years, scholarly data has grown dramatically in terms of both scale and complexity. It becomes increasingly challenging to retrieve information from scholarly knowledge graphs that include large-scale heterogeneous relationships, such as authorship, affiliation, and citation, between various types of entities, e.g., scholars, papers, and organizations. As part of the Scholarly QALD Challenge, this paper presents a question-answering (QA) system called NLQxform, which provides an easy-to-use natural language interface to facilitate accessing scholarly knowledge graphs. NLQxform allows users to express their complex query intentions in natural language questions. A transformer-based language model, i.e., BART, is employed to translate questions into standard SPARQL queries, which can be evaluated to retrieve the required information. According to the public leaderboard of the Scholarly QALD Challenge at ISWC 2023 (Task 1: DBLP-QUAD - Knowledge Graph Question Answering over DBLP), NLQxform achieved an F1 score of 0.85 and ranked first on the QA task, demonstrating the competitiveness of the system.
Abstract:This paper presents an analysis of the distribution of spoken language in the V3C video retrieval benchmark dataset based on automatically generated transcripts. It finds that a large portion of the dataset is covered by spoken language. Since language transcripts can be quickly and accurately described, this has implications for retrieval tasks such as known-item search.
Abstract:Answering multi-relation questions over knowledge graphs is a challenging task as it requires multi-step reasoning over a huge number of possible paths. Reasoning-based methods with complex reasoning mechanisms, such as reinforcement learning-based sequential decision making, have been regarded as the default pathway for this task. However, these mechanisms are difficult to implement and train, which hampers their reproducibility and transferability to new domains. In this paper, we propose QAGCN - a simple but effective and novel model that leverages attentional graph convolutional networks that can perform multi-step reasoning during the encoding of knowledge graphs. As a consequence, complex reasoning mechanisms are avoided. In addition, to improve efficiency, we retrieve answers using highly-efficient embedding computations and, for better interpretability, we extract interpretable paths for returned answers. On widely adopted benchmark datasets, the proposed model has been demonstrated competitive against state-of-the-art methods that rely on complex reasoning mechanisms. We also conducted extensive experiments to scrutinize the efficiency and contribution of each component of our model.
Abstract:The 11th Summer Workshop on Multimodal Interfaces eNTERFACE 2015 was hosted by the Numediart Institute of Creative Technologies of the University of Mons from August 10th to September 2015. During the four weeks, students and researchers from all over the world came together in the Numediart Institute of the University of Mons to work on eight selected projects structured around intelligent interfaces. Eight projects were selected and their reports are shown here.